1023 of dp

Problem W

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 64   Accepted Submission(s) : 23
Problem Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。<br>
 

Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000) <br>后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。 <br>输入的最后有两个0。<br>
 

Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。<br>
 

Sample Input
  
  
10 3 4 0.1 4 0.2 5 0.3 0 0
 

Sample Output
  
  
44.0% <div style='font-family:Times New Roman;font-size:14px;background-color:F4FBFF;border:#B7CBFF 1px dashed;padding:6px'><div style='font-family:Arial;font-weight:bold;color:#7CA9ED;border-bottom:#B7CBFF 1px dashed'><i>Hint</i></div> You should use printf("%%") to print a '%'. </div>
 
题目要求:一个小朋友想要出国,但是每申请一个学校就要花费一些钱,而他花的最多的钱不能超过一定金额,求最大录取概率。
解题思路:是一个背包变形问题,和上题一样,直接求概率不好做,但是求不被录取的概率最小即可。背包容量即为总价值,开始没有申请任何学校,所以不被录取的概率为1,动态转移方程为dp[j]=min(dp[j],dp[j-a[i]]*p[i]),经过循环后就输出1-dp[w]百分形式即可。注意dp为double类的数组。
解题代码:
#include<stdio.h>
double dp[10005],p[10005];
int a[10005];
int main()
{
    int n,i,j,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
      if(m==0&&n==0) 
          break;
      for(i=0;i<m;i++)
      {
          scanf("%d%lf",&a[i],&p[i]);
          p[i]=1-p[i];  //不能得到Offer的概率
      }
      for(i=0;i<=n;i++)
          dp[i]=1.0;  //初始化为1
          for(i=0;i<m;i++)
            for(j=n;j>=a[i];j--)
              if(dp[j]>dp[j-a[i]]*p[i])
                  dp[j]=dp[j-a[i]]*p[i];//求最小的不能得到的dp[n]
              printf("%.1lf%%\n",(1-dp[n])*100);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值