动态规划概念讲解

定义

动态规划与分治算法类似,都是通过组合子问题的解来求解原问题。分治算法将问题划分为互不相关的子问题,递归地求解子问题,再将它们的解组合起来,求出原问题的解。与之相反,动态规划应用于子问题重叠的情况,即不同的子问题具有公共的子子问题(子问题的求解是递归进行的,将其划分成更小的子子问题),动态规划算法会将每个子问题的解保存,避免一些不必要的计算工作。
动态规划通过用来求解最优化问题

定义取自<<算法导论>>第三版第15章。

能用动规解决的问题的特点

  1. 最优子结构:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。
  2. 无后效性:当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

动态规划例题之数字三角形

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。

用二维数组存放数字三角形。
D( r, j) : 第r行第 j 个数字(r,j从1开始算)
MaxSum(r, j) : 从D(r,j)到底边的各条路径中,最佳路径的数字之和。
问题:求 MaxSum(1,1)

典型的递归问题。
D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形:

if ( r == N)
MaxSum(r,j) = D(r,j)
else
MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j)

求解过程

1. 将问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变了。子问题都解决,原问题即解决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2. 确定状态

  • 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
  • 所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
    整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。
    在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
  • 用动态规划解题,经常碰到的情况是, K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。如果这K个整型变量的取值范围分别是N1, N2, ……Nk,那么,我们就可以用一个K维的数组array[N1] [N2]……[Nk]来存储各个状态的“值”。这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个“状态”下的“值”通常会是一个或多个子问题的解。

3. 确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4. 确定状态转移方程

定义出什么是“状态”,以及在该 “状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的“状态”,求出另一个“状态”的“值” (“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程:
这里写图片描述

参考资料

Coursera_算法基础_动态规划
https://d396qusza40orc.cloudfront.net/pkupop/lectures/Week13/W13-01_%E5%8A%A8%E5%BD%92%E5%85%A5%E9%97%A8-%E6%95%B0%E5%AD%97%E4%B8%89%E8%A7%92%E5%BD%A2.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值