多阶段决策过程(multistep decision process)
- 多阶段决策过程是指这样一类特殊的活动过程,过程可以按照时间的顺序分解成很多个相互联系的阶段,而每一个阶段都要求做决策,全部过程的决策就是一个决策序列。而动态规划建立在最优原则的基础上,是解决多阶段决策过程最优化问题的一种常用方法。
常见的动态规划问题
- 数字三角形
- 有向无环图(DAG)问题
- 0-1背包问题
- 最优矩阵链乘
- 树形dp
记忆化搜索与递推
- 分析出状态转移方程以后,如果用递归来实现,发现会重复计算许多子问题,因此我们可以用递推和记忆化搜索的方法来避免这种情况。
- 记忆化搜索就是在递推的时候,储存每次算出的结果,每次调用递归函数的时候,先去检查一下之前是否已经存储过结果,这样子就可以避免重复计算。如计算斐波那契数列时,可以储存之前两个的数列项。
- 也可以用递推发计算状态转移方程,而递推的关键是边界和计算顺序。但是一般要注意哪些项是先算出来的,哪些是基于之前算出来的来进一步计算。所以循环的顺序和初始化很重要。
动态规划的基础
- 最优子结构
- 重叠子问题
与动态规划相似的问题
- 分治法
- 贪心法
- 回溯法
- 递归