OJ 7219 复杂的整数划分各变形题总结__动态规划

描述

将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。

输入

标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。
(0 < N <= 50, 0 < K <= N)

输出

对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目

样例输入

5 2

样例输出

2
3
3

提示
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1

分析

整数划分问题这几个变形确实很经典,需要一个个说明下:
设dp[n][m]表示数n划分方案中,每个数 不大于m 的划分数。

N划分成若干个可相同正整数之和

划分分两种情况:

  • 划分中每个数都小于m:则划分数为dp[n][m-1]。
  • 划分中至少有一个数等于m:则从n中减去去m,然后从n-m中再划分,则划分数为dp[n-m][m]。

动态转移方程:dp[n][m]=dp[n][m-1]+dp[n-m][m]

N划分成若干个不同正整数之和

划分分两种情况:

  • 划分中每个数都小于m:则划分数为dp[n][m-1]。
  • 划分中至少有一个数等于m:则从n中减去m,然后从n-m中再划分,且再划分的数中每个数要小于m, 则划分数为dp[n-m][m-1]。

动态转移方程:dp[n][m]=dp[n][m-1]+dp[n-m][m-1]

N划分成K个正整数之和

设dp[n][k]表示数n划分成k个正整数之和时的划分数。
划分分两种情况:

  • 划分中不包含1:则要求每个数都大于1,可以先拿出k个1分到每一份,之后在n-k中再划分k份,即dp[n-k][k]。
  • 划分中包含1:则从n中减去1,然后从n-1中再划分k-1份, 则划分数为dp[n-1][k-1]。

动态转移方程:dp[n][k]=dp[n-k][k]+dp[n-1][k-1]

N划分成若干个奇正整数之和

设f[i][j]表示将数i分成j个正奇数,g[i][j]表示将数i分成j个正偶数。
首先如果先给j个划分每个分个1,因为奇数加1即为偶数,所以可得:
f[i-j][j] = g[i][j]。
划分分两种情况:

  • 划分中不包含1:则要求每个数都大于1,可以先拿出k个1分到每一份,刚可将问题转换为"从i-j中划分j个偶数",即g[i-j][j]。
  • 划分中包含1:则从n中减去1,然后从n-1中再划分k-1份, 则划分数为dp[n-1][k-1]。

动态转移方程:f[i][j]=f[i-1][j-1]+g[i-j][j]

实现

#include <iostream>
#include <cstring>
using namespace std;
#define N 51
int dp1[N][N];    //N划分成K个正整数之和的划分数目。
int dp2[N][N];    //N划分成若干个不同正整数之和的划分数目。
int dp3[N][N];    //N划分成若干个可相同的正整数之和的划分数目。
int f[N][N];      //N划分成K个奇正整数之和的划分数目。
int g[N][N];      //N划分成K个偶正整数之和的划分数目。

void initDivideInt() {
	memset(dp1, 0, sizeof(dp1));  //dp[n][k]=dp[n-k][k]+dp[n-1][k-1]
	memset(dp2, 0, sizeof(dp2));  //dp[n][m]=dp[n][m-1]+dp[n-m][m-1]
	memset(dp3, 0, sizeof(dp3));  //dp[n][m]=dp[n][m-1]+dp[n-m][m]

	for (int i = 1; i < N; i++) {
		for (int j = 1; j < N; j++) {
			if (i < j) {
				dp1[i][j] = 0;
				dp2[i][j] = dp2[i][i];
				dp3[i][j] = dp3[i][i];
			}
			else if (i == j) {
				dp1[i][j] = 1;
				dp2[i][j] = dp2[i][j - 1] + 1;
				dp3[i][j] = dp3[i][j - 1] + 1;
			}
			else {
				dp1[i][j] = dp1[i - j][j] + dp1[i - 1][j - 1];
				dp2[i][j] = dp2[i][j - 1] + dp2[i - j][j - 1];
				dp3[i][j] = dp3[i][j - 1] + dp3[i - j][j];
			}
		}
	}
}

//f[i][j]=f[i-1][j-1]+g[i-j][j]
void initDivideOdd() {
	f[0][0] = 1;
	g[0][0] = 1;
	for (int i = 1; i < N; i++) {
		for (int j = 1; j <= i; j++) {
			g[i][j] = f[i - j][j];
			f[i][j] = f[i - 1][j - 1] + g[i - j][j];
		}
	}
}

int main() {
//	freopen("in.txt", "r", stdin);
	int n, k;
	initDivideInt();
	initDivideOdd();
	while (cin >> n >> k) {
		cout << dp1[n][k] << endl;
		cout << dp2[n][n] << endl;

		int sum = 0;
		for (int i = 0; i <= n; i++) {
			sum += f[n][i];
		}
		cout << sum << endl;
	}
	return 0;
}
  • 11
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值