54 - 算法 - 动态规划问题 连续子序列和最大

本文介绍了一个使用动态规划解决连续子序列和最大问题的方法,通过C++代码展示了如何计算数组中最大连续子序列和,并提供了关键函数maxSubSum和disp的实现。重点在于理解递推公式dp[i]=max(dp[i-1]+a[i],a[i])的应用。
摘要由CSDN通过智能技术生成
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;

/*
问题:动态规划问题 连续子序列和最大 dp[i] = max(dp[i-1]+a[i],a[i]);
解决思路:循环  dp[i] 记录当前子序列和最大的值 
时间:2021年4月3日23时01分
*/

//宏定义区
#define max(x,y) ((x)>(y)?(x):(y))

//全局变量定义区 结构体 变量
int n = 6;
int a[] = { -2,11,-4,13,-5,-2 };
int dp[100];  //当前状态 位置的最大连续子序列的和

//其他函数定义区
void maxSubSum()
{
	dp[0] = 0;
	for (int i = 1; i <= n; i++)
	{
		dp[i] = max(dp[i-1]+a[i],a[i]);
	}
}

void disp()
{
	int maxj = 1;
	int k;
	for (int j = 2; j <= n; j++)
	{
		if (dp[j] > dp[maxj])
		{
			maxj = j;
		}
	}
	for ( k = maxj; k >= 1; k--)
	{
		if (dp[k] < 0)
		{
			break;
		}
	}
	printf("res is %d\n", dp[maxj]);
	for (int  i = k+1; i <= maxj; i++)
	{
		printf("%4d", a[i]);
	}
}

int main()
{
	//main 函数测试操作
	maxSubSum();
	disp();

	system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值