#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
/*
问题:动态规划问题 连续子序列和最大 dp[i] = max(dp[i-1]+a[i],a[i]);
解决思路:循环 dp[i] 记录当前子序列和最大的值
时间:2021年4月3日23时01分
*/
//宏定义区
#define max(x,y) ((x)>(y)?(x):(y))
//全局变量定义区 结构体 变量
int n = 6;
int a[] = { -2,11,-4,13,-5,-2 };
int dp[100]; //当前状态 位置的最大连续子序列的和
//其他函数定义区
void maxSubSum()
{
dp[0] = 0;
for (int i = 1; i <= n; i++)
{
dp[i] = max(dp[i-1]+a[i],a[i]);
}
}
void disp()
{
int maxj = 1;
int k;
for (int j = 2; j <= n; j++)
{
if (dp[j] > dp[maxj])
{
maxj = j;
}
}
for ( k = maxj; k >= 1; k--)
{
if (dp[k] < 0)
{
break;
}
}
printf("res is %d\n", dp[maxj]);
for (int i = k+1; i <= maxj; i++)
{
printf("%4d", a[i]);
}
}
int main()
{
//main 函数测试操作
maxSubSum();
disp();
system("pause");
return 0;
}
54 - 算法 - 动态规划问题 连续子序列和最大
本文介绍了一个使用动态规划解决连续子序列和最大问题的方法,通过C++代码展示了如何计算数组中最大连续子序列和,并提供了关键函数maxSubSum和disp的实现。重点在于理解递推公式dp[i]=max(dp[i-1]+a[i],a[i])的应用。
摘要由CSDN通过智能技术生成