动态规划法求解最大连续子序列和问题

问题描述

给定一个有n(n≥1)个整数的序列,要求求出其中最大连续子序列的和。
例如
序列(-2,11,-4,13,-5,-2)的最大子序列和为20
序列(-6,2,4,-7,5,3,2,-1,6,-9,10,-2)的最大子序列和为16
规定一个序列最大连续子序列和至少是0,如果小于0,其结果为0。

问题求解

对于含有n个整数的序列a,设
bj=MAX{ai+ai+1+…+aj} (1≤j≤n)
表示a[1…j]的前j个元素中的最大连续子序列和,则bj-1表示a[1…j-1]的前j-1个元素中的最大连续子序列和。
当bj-1>0时,bj=bj-1+aj,当bj-1≤0时,放弃前面选取的元素,从aj开始重新选起,bj=aj。用一维动态规划数组dp存放b,对应的状态转移方程如下:
在这里插入图片描述
则序列a的最大连续子序列和等于dp[j](1≤j≤n)中的最大者。

代码

int n = 6;
int a[] = { 0. - 2,11,-4,13,-5,-2 };
int dp[MAXN];

void maxSubSum()
{
	dp[0] = 0;
	for (int j = 1; j <= n; j++)
		dp[j] = max(dp[j - 1] + a[j], a[j]);
}

void dispmaxSum()
{
	int maxj = 1;
	int k;
	for (int j = 2; j <= n; j++)
		if (dp[j] > dp[maxj])
			maxj = j;
	for (k = maxj; k >= 1; k--)//寻找前一个小于等于0的值
		if (dp[k] <= 0)
			break;
	cout << "最大连续子序列和" << dp[maxj];
	for (int i = k + 1; i <= maxj; i++)
		cout << a[i] << " ";
}

算法分析

maxSubSum()的时间复杂度为O(n) 。

发布了77 篇原创文章 · 获赞 1 · 访问量 2065
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览