Pytorch 定义自己的数据集

Pytorch 定义自己的数据集

原理请阅读参考文献,这个博客只是记录一下定义流程,便于理解和学习。
素材和代码下载:
链接:https://pan.baidu.com/s/1uF1-uFDBn5aArH56Y4Xkkg
提取码:vrna

参考文献:

Pytorch中正确设计并加载数据集方法
https://ptorch.com/news/215.html

Pytorch学习(三)定义自己的数据集及加载训练
https://blog.csdn.net/sinat_42239797/article/details/90641659

一文读懂Dataset, DataLoader及collate_fn, Sampler等参数
https://blog.csdn.net/qq_40728805/article/details/103929164?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522160827329916780273337687%252522%25252C%252522scm%252522%25253A%25252220140713.130102334…%252522%25257D&request_id=160827329916780273337687&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_click~default-1-103929164.nonecase&utm_term=collate_fn

创建两个文件夹

在data_train文件夹中创建Annotations_synthesis和JPEGImages_synthesis两个文件夹。
在这里插入图片描述
其中在Annotations_synthesis文件夹中放置xml文件:
在这里插入图片描述
在JPEGImages_synthesis文件夹中放置对应的图片:
在这里插入图片描述

生成txt文件

在data_train文件夹中创建data_distribution.py文件
在这里插入图片描述
代码如下:

import os
import xml.etree.ElementTree as ET

def convert_annotation(_xml_path, _list_file, _class):
    in_file = open(_xml_path, encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in _class or int(difficult) == 1:
            continue
        cls_id = _class.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text),
             int(xmlbox.find('ymax').text))
        _list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
    _list_file.write('\n')


if __name__ == '__main__':
    style = '.png'  # 改成自己的图片格式
    classes = ['combustion_lining', 'fan', 'fan_stator_casing_and_support', 'hp_core_casing', 'hpc_spool',
               'hpc_stage_5', 'mixer', 'nozzle', 'nozzle_cone', 'stand']  # 为了获得cls id
    train_img_file_path = './JPEGImages_synthesis'
    tran_xml_file_path = './Annotations_synthesis'
    total_xml = os.listdir(tran_xml_file_path)
    train_txt = open('./train.txt', 'w')
    for i in range(len(total_xml)):
        name = total_xml[i][:-4]
        train_txt.write('%s/%s%s' % (train_img_file_path, name,style))
        xml_path = os.path.join(tran_xml_file_path, total_xml[i])
        convert_annotation(xml_path, train_txt, classes)
        print('已完成第 ', i, ' 张图片')
    train_txt.close()

运行
data_distribution.py
生成的txt文件如下:
在这里插入图片描述

定义自己的数据集

和data_train文件夹同级创建一个ttt.py文件,
在这里插入图片描述
代码如下:

from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import numpy as np
import os
import cv2
import torch


class MyDataSet(Dataset):
    def __init__(self, _tex_path, _dataset_dir):
        super(MyDataSet, self).__init__()
        truth = {}
        f = open(_tex_path, 'r', encoding='utf-8')
        for line in f.readlines():
            data = line.split(" ")
            truth[data[0]] = []
            for i in data[1:]:
                truth[data[0]].append([int(j) for j in i.split(',')])

        self.truth = truth
        self.dataset_dir = _dataset_dir

    def __getitem__(self, index):
        img_path = list(self.truth.keys())[index]
        boxes=np.zeros((60,5))
        bboxes = np.array(self.truth.get(img_path), dtype=np.float)

        boxes[0:bboxes.shape[0]]=bboxes
        img_path = os.path.join(self.dataset_dir, img_path)
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (608, 608))
        return img, boxes

    def __len__(self):
        return len(self.truth.keys())


def collate(batch):
    images = []
    bboxes = []
    for img, box in batch:
        images.append([img])
        bboxes.append([box])
    images = np.concatenate(images, axis=0)
    images = images.transpose(0, 3, 1, 2)
    images = torch.from_numpy(images).div(255.0)
    bboxes = np.concatenate(bboxes, axis=0)
    bboxes = torch.from_numpy(bboxes)
    return images, bboxes


if __name__ == '__main__':
    tex_path = './data_train/train.txt'
    dataset_dir = './data_train'
    dataset = MyDataSet(tex_path, dataset_dir)
    for i in range(10):
        #out_img, out_bboxes = dataset.__getitem__(i)  #测试一下dataset 
        out_img, out_bboxes = dataset[i] #测试一下dataset 
        print(out_img.shape)
        print(out_bboxes.shape)

    train_loader = DataLoader(dataset, batch_size=3,
                              collate_fn=collate)
    for i, batch in enumerate(train_loader):  #  测试 DataLoader
        imgs = batch[0]
        print(imgs.shape)
        bboxes = batch[1]
        print(bboxes.shape)

可以调试看看,加深对数据集定义的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值