学习记录 --- few-shot

### 少样本回归概念 少样本回归(Few-Shot Regression, FSR)旨在利用少量标记样本来预测连续变量。传统机器学习方法通常需要大量标注数据来构建稳健模型,但在许多现实场景中获取大规模高质量标签成本高昂甚至不可行。FSR通过引入先验知识或迁移已有领域经验至目标任务,从而有效缓解这一挑战。 在具体实现上,非高斯高斯过程提供了一种灵活框架用于处理小样本情况下的回归任务[^2]。这类模型不仅能够捕捉输入特征间的复杂关系,还具备评估预测不确定性能力,这对决策支持系统尤为重要。 ### 应用场景举例 #### 生物医学工程 临床试验往往面临样本稀缺难题,尤其是在罕见病研究方面。借助于少样本回归技术,研究人员可以从有限患者记录中挖掘有价值信息,辅助疾病诊断与治疗方案制定。 ```python import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel # 假设X_train为已知少数病例特征,Y_train为目标响应(如药物剂量反应) kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=15) gp.fit(X_train, Y_train) # 使用少量训练集拟合模型 ``` #### 物联网设备监控 工业环境中传感器部署广泛却难以频繁校准维护。采用少样本回归算法可基于历史短周期运行状态快速调整参数设定,保障生产流程稳定性和产品质量一致性。 #### 自动驾驶汽车感知模块 面对突发状况或未曾遇见过的道路条件时,车辆需即时做出合理判断。此时运用预先积累的小规模特殊案例库配合少样本回归策略有助于提升应对未知情境的安全性与可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值