朴素贝叶斯分类器

1.贝叶斯公式

  • 条件概率
    p(B|A)=p(AB)p(A)

    p(AB)=p(A)p(B|A)
  • 全概率公式
    p(A)=p(B1)p(A|B1)+p(B2)p(A|B2)+...+p(Bn)p(A|Bn)
  • 贝叶斯公式
    p(Bi|A)=p(ABi)p(A)=p(A|Bi)p(Bi)Σj=0np(A|Bj)p(Bj)

    该公式给出了在事件 A 下,事件 Bi 发生的概率的计算方法。通常,将此公式成为后验概率公式,即在已知观察量 A 后得出的参数 B 的分布。其中 p(Bi) 称为先验概率,是人们根据经验给出的参数 Bi 的分布。
    贝叶斯方法与最大似然法的区别就在于引入了先验概率,通过先验概率可以避免最大似然法所带来的过拟合问题。

2.朴素贝叶斯方法

  • 对于 B={B1,B2...Bn} ,其条件概率可表示为
    p(B|A)=p(B1|A)p(B2|A,B1)p(B3|A,B1,B2)...p(Bn|A,B1,...,Bn1)
    然而在实际情况中,等式右边的公式很难计算出来。故我们做出一个较强的假设,即 Bi 是相互独立的,这样条件概率可以表示为
    p(B|A)=p(B1|A)p(B2|A)...p(Bn|A)
    这就是朴素贝叶斯方法。当然在实际情况中,这种相互独立的假设往往是不成立的,然而其还是可以在一定程度上给出对数据的描述。
  • 根据这个假设,我们可以分别计算 p(Bi|A)p(A|Bi)p(Bi) 若对 ji , 有 p(Bi|A)>p(Bj|A) A 就可归为 Bi

3.实例

在训练过程中,需要计算两个概率:
* 先验概率 p(Bi)=Num(Bi)Num(B)
* 条件概率 p(A|Bi)=Num(A,Bi)Num(Bi)

from numpy import *

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea','problems', 'help', 'please'],
        ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
        ['my', 'dalmation', 'is', 'so', 'cute','I', 'love', 'him'],
        ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
        ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
        ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec=[0, 1, 0, 1, 0, 1]
    return postingList, classVec

def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)

def setOfWord2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]=1
        else:
            print "the word: %s is not in my vocabulary!" % word
    return returnVec

def trainNB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    p0Denom = 2.0; p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect =log(p1Num/p1Denom)
    p0Vect =log(p0Num/p0Denom)
    return p0Vect, p1Vect, pAbusive

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify*p1Vec) + log(pClass1)
    p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
    if p1 > p0:
        return 1
    else:
        return 0


def testingNB():
    listOPosts, listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWord2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWord2Vec(myVocabList, testEntry))
    print testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)
    testEntry=['stupid', 'garbage']
    thisDoc = array(setOfWord2Vec(myVocabList, testEntry))
    print testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]+=1
    return returnVec


def textParse(bigString):
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok)>2]

def spamTest():
    docList = []; classList=[]; fullText=[]
    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = range(50);
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(setOfWord2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam=trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWord2Vec(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ',float(errorCount)/len(testSet)


def calcMostFreq(vocabList, fullText):
    import operator
    freqDict={}
    for token in vocabList:
        freqDict[token] = fullText.count(token)
    sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedFreq[:30]

def localWords(feed1, feed0):
    import feedparser
    docList=[]; classList=[]; fullText=[]
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    top30Words = calcMostFreq(vocabList, fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])
    trainingSet = range(2*minLen)
    testSet=[]
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount)/len(testSet)
    return vocabList, p0V, p1V





if __name__=="__main__":
    listOPosts, listClasses = loadDataSet()
    print listOPosts, listClasses
    myVocabList = createVocabList(listOPosts)
    print myVocabList
    print setOfWord2Vec(myVocabList, listOPosts[0])
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWord2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, listClasses)
    print p0V
    print testingNB()
    spamTest()
    import feedparser
    ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
    sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
    vocabList,pSF,pNY=localWords(ny,sf)


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素叶斯分类(Naive Bayes classifier)是一种常用的概率分类方法,它基于叶斯理论和特征独立假设。朴素叶斯分类有着简单高效的特点,在文本分类、垃圾邮件过滤、情感分析等领域都有广泛应用。 朴素叶斯分类的基本原理是利用训练集的特征和对应的分类标签构建生成模型,然后根据测试样本的特征,通过计算后验概率来进行分类预测。具体而言,朴素叶斯分类假设特征之间相互独立,基于此假设,可以通过训练集中特征在各个类别下的条件概率来计算样本在不同类别下的后验概率,并选择后验概率最大的类别作为分类结果。 朴素叶斯分类的训练过程包括两个步骤:首先是计算各个类别的先验概率,即每个类别在训练集中的出现频率;然后是计算每个特征在各个类别下的条件概率,即给定一个类别时,特征的条件概率。在得到先验概率和条件概率后,可以通过叶斯公式计算后验概率。 朴素叶斯分类的优点在于对小规模数据集具有较好的分类性能,且能够处理多类别分类问题。而其缺点则是对于特征之间的相关性较为敏感,当特征之间存在强相关性时,朴素叶斯分类的性能会下降。 总的来说,朴素叶斯分类是一种简单而有效的分类方法,它在许多实际应用中表现出色。其理论基础扎实,实现相对简单,适用于处理小规模数据集的分类问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值