记广州大夫山一游

    今天去广州大夫山一游,关于广州大夫山的基本信息,介绍和好玩的地方,可能大家只要百度一下就有一大堆信息,因此,这儿我就不再重复阐述了。只是强调一下,昨天晚上在广州坐车网查到的一条路线,被我同学验证说是那条路线节假日公交专线的“不存在”了。虽然在动物园南站的车牌确实有那条路线显示,听司机说那条路线早就没运营了。因此,这里,告诫一下准备坐那条路线去大夫山的亲们,在去之前有条件的话最好还是向相关部门或者通过其它渠道了解信息的真实性。或者多收集几条渠道去的。

     结果路线:坐地铁到汉溪长隆 从D出口出 到后面的公交站坐专线A10 直达大夫山北门。

 

(本来还想继续 express 一下我其它方面的感想的,但由于时间关系,还是明天待续咯。)

 

    

创建个好大夫在线平台的爬虫程序通常需要以下几个步骤: 1. **需求分析**: - 确定你需要爬取的数据,比如医生信息、科室、评价等。 2. **了解网站结构**: - 使用浏览器开发者工具检查网站的HTML源码,找到数据所在的主要元素和API路径。 3. **选择合适的语言和库**: - Python是个常用的选择,因为它有强大的网络爬虫框架如BeautifulSoup、Scrapy或使用requests和lxml库进行HTTP请求和解析。 4. **编写代码**: - 使用Python的`requests`库发送GET请求获取HTML内容。 - `BeautifulSoup`或`lxml`用于解析HTML,提取所需的数据。 ```python import requests from bs4 import BeautifulSoup url = 'https://www.haodf.com/' response = requests.get(url) soup = BeautifulSoup(response.text, 'lxml') ``` 5. **处理数据**: - 根据页面结构,定位到医生列表、详情页等,提取出姓名、职称、医院信息、评价等内容。 - 可能需要用到正则表达式(re模块)来提取复杂的文本信息。 6. **存储数据**: - 将爬取的信息保存到文件、数据库或者数据结构(如字典、列表)中,方便后续处理和分析。 7. **错误处理和反爬机制**: - 添加适当的错误处理,比如重试机制、网络连接异常处理等。 - 遵守网站的robots.txt协议,尊重网站的爬虫政策。 8. **定期运行和更新**: - 如果网站结构发生变化,可能需要调整爬虫逻辑。 ```python # 示例代码片段: def parse_doctor_info(soup): doctors = soup.find_all('div', class_='doctor-list-item') for doctor in doctors: name = doctor.find('h3').text profile_url = doctor.find('a')['href'] # ...继续提取其他信息 yield name, profile_url data = [] for name, url in parse_doctor_info(soup): response = requests.get(url) doctor_soup = BeautifulSoup(response.text, 'lxml') # 提取详细信息并添加到data中 # 存储数据 with open('haodf_data.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['姓名', '医院', '评价']) writer.writerows(data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值