蓝桥杯基础算法之最大最小公倍数
题目
已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
输入格式
输入一个正整数N
输出格式
输出一个整数,表示你求得的最小公倍数
样例输入
9
样例输出
504
注释 504 = 9 * 8 * 7
数据规模与约定
1 <= N <= 106
分析
题目要求涉及贪心算法,对于个人而言,更像是一个纯数学问题:
题目主要分析:
- 主要找三个数,这三个数主要考虑第一位与第三位之间的公约数问题
- N分为奇数和偶数讨论
- 奇数下 所求 = N * (N-1) * (N-2) N 和 N-2 之间 相差2 ,除1之外无公约数,所求最大最小公倍数即为三者相乘。
- 偶数下分两种情况 由于 (N肯定大于3)N 和 N -2 之间必然存在公约数2,使得 N、N-1、N-2之间必然不能直接相乘得到所求,考虑N-3、N-5 ,当考虑到N-5的时候不得不考虑(N-1) * (N-2) * (N-3) ,由上述3可知该数同样满足要求,列项可知(N-1) * (N-2) *