最大最小公倍数

本文介绍了蓝桥杯基础算法题——找到1到N中任意三个数的最大最小公倍数。通过分析,提出了针对奇数和偶数N的不同策略,并提供了相应的解决方案。代码实现中强调了数据类型的选择,以确保在评测平台上的精度要求。
摘要由CSDN通过智能技术生成

蓝桥杯基础算法之最大最小公倍数

题目
已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。

输入格式
输入一个正整数N

输出格式
输出一个整数,表示你求得的最小公倍数

样例输入

9

样例输出

504
注释 504 = 9 * 8 * 7

数据规模与约定
1 <= N <= 106

分析
题目要求涉及贪心算法,对于个人而言,更像是一个纯数学问题:
题目主要分析:

  1. 主要找三个数,这三个数主要考虑第一位与第三位之间的公约数问题
  2. N分为奇数和偶数讨论
  3. 奇数下 所求 = N * (N-1) * (N-2) N 和 N-2 之间 相差2 ,除1之外无公约数,所求最大最小公倍数即为三者相乘。
  4. 偶数下分两种情况 由于 (N肯定大于3)N 和 N -2 之间必然存在公约数2,使得 N、N-1、N-2之间必然不能直接相乘得到所求,考虑N-3、N-5 ,当考虑到N-5的时候不得不考虑(N-1) * (N-2) * (N-3) ,由上述3可知该数同样满足要求,列项可知(N-1) * (N-2) * ࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值