2020蓝桥杯省内模拟赛(大学B组)
第一题:
题目描述:
小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
输入格式:
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
输出格式:
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
样例输入:
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
样例输出:
12
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include<stdlib.h>
using namespace std;
const int MAXN = 1000 + 10;
int n;
int x[MAXN], y[MAXN], r[MAXN];
double pi = acos(-1);
bool vis[MAXN];
int ans = 0;
bool cal(int i)
{
for(int j = 0; j < n; j ++)
{
if(i != j && vis[j])
{
int dis = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
if(dis < (r[i] + r[j]) * (r[i] + r[j])) return false;
}
}
return true;
}
void dfs(int step, int sum)
{
if(step == n)
{
ans = max(ans, sum);
return;
}
for(int i = 0; i < n; i ++)
{
if(!vis[i])
{
int tmp = r[i];
if(!cal(i)) r[i] = 0;
vis[i] = true;
dfs(step + 1, sum + r[i] * r[i]);
vis[i] = false;
r[i] = tmp;
}
}
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; i ++)
scanf("%d%d%d", &x[i], &y[i], &r[i]);
dfs(0, 0);
printf("%d", ans);
system("pause");
return 0;
}
第二题:
题目描述:
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
输入格式:
输入一行包含两个整数 m,n。
输出格式:
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
样例输入:
3 4
样例输出:
14
样例说明:
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
评测用例规模与约定
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。
#include<iostream>
#include<stdlib.h>
#include<vector>
using namespace std;
int main()
{
int m,n=5;
cin>>m>>n;
vector<vector<int> > dp(m+1, vector<int>(n, 0));
for (int i = 0; i < dp[m].size(); i++)
{
dp[m][i] = 1;
}
for (int i = m-1; i >= 0; i--)
{
if ((i&1) == 1)
{
for (int j = 1; j < n; j++)
{
dp[i][j] = (dp[i][j-1]+dp[i+1][j-1])%10000;
}
}
else
{
for (int j = n-2; j >= 0; j--)
{
dp[i][j] = (dp[i][j+1] + dp[i+1][j+1])%10000;
}
}
}
cout<<dp[0][0]<<endl;
system("pause");
return 0;
}
第三题:
题目描述:
给定一个单词,请使用凯撒密码将这个单词加密。
凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,…,w变为z,x变为a,y变为b,z变为c。
例如,lanqiao会变成odqtldr。
输入格式:
输入一行,包含一个单词,单词中只包含小写英文字母。
输出格式:
输出一行,表示加密后的密文。
样例输入:
lanqiao
样例输出:
odqtldr
评测用例规模与约定
对于所有评测用例,单词中的字母个数不超过100。
#include<iostream>
#include<stdlib.h>
#include<string.h>
using namespace std;
int main()
{
char num[100]={0};
cin>>num;
for(int i=0;i<strlen(num);i++)
{
num[i]+=3;
num[i]%=122;
cout<<num[i];
}
system("pause");
return 0;
}
第四题:
题目描述:
给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。请问在 1 至 n 中有多少个反倍数。
输入格式:
输入的第一行包含一个整数 n。
第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。
输出格式:
输出一行包含一个整数,表示答案。
样例输入:
30
2 3 6
样例输出:
10
样例说明:
以下这些数满足要求:
1, 5, 7, 11, 13, 17, 19, 23, 25, 29。
评测用例规模与约定
对于 40% 的评测用例,1 <= n <= 10000。
对于 80% 的评测用例,1 <= n <= 100000。
对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。
#include<iostream>
#include<stdlib.h>
using namespace std;
int main()
{
long num[3]={0};
long n=0;
cin>>n;
for(int i=0;i<3;i++)
cin>>num[i];
long count=0;
for(int i=1;i<=n;i++)
{
if((i%num[0])&&(i%num[1])&&(i%num[2]))
count++;
}
cout<<count;
system("pause");
return 0;
}
第五题:
题目描述:
对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
例如,一个 4 行 5 列的螺旋矩阵如下:
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
输入格式:
输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
第二行包含两个整数 r, c,表示要求的行号和列号。
输出格式:
输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
样例输入:
4 5
2 2
样例输出:
15
评测用例规模与约定
对于 30% 的评测用例,2 <= n, m <= 20。
对于 70% 的评测用例,2 <= n, m <= 100。
对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。
#include<iostream>
#include<stdlib.h>
using namespace std;
struct circle
{
int x1,x2;
int y1,y2;
};
int main()
{
int n,m;
int r,c;
cin>>n>>m;
cin>>r>>c;
int total=n*m;
int a=n/2;
if(n%2!=0) a++;
circle q[a];
int x1=1,x2=n;
int y1=1,y2=m;
for(int i=0;i<a;i++)
{
q[i].x1=x1;
q[i].x2=x2;
q[i].y1=y1;
q[i].y2=y2;
x1++;
x2--;
y1++;
y2--;
}
int num=0;
for(int i=a-1;i>=0;i--)
{
if(r>=q[i].x1&&r<=q[i].x2&&c>=q[i].y1&&c<=q[i].y2)
{
for(int j=0;j<i;j++)
{
num=num+(q[j].y2-q[j].y1+1)*2+(q[j].x2-q[j].x1-1)*2;
}
if(r==q[i].x1)
{
num=num+c-q[i].y1+1;
}
else if(c==q[i].y2)
{
num=num+(q[i].y2-q[i].y1+1)+r-q[i].x1;
}
else if(r==q[i].x2)
{
num=num+(q[i].y2-q[i].y1+1)+(q[i].x2-q[i].x1-1)+q[i].y2-c+1;
}
else
{
num=num+(q[i].y2-q[i].y1+1)*2+(q[i].x2-q[i].x1-2)+q[i].x2-r+1;
}
cout<<num<<endl;
system("pause");
return 0;
}
}
}
第六题:
题目描述:
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为sqrt((x_1-x_2)(x_1-x_2)+(y_1-y_2)(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
输入格式:
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
输出格式:
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
样例输入:
4
1 1 3
9 9 7
8 8 6
4 5 4
样例输出:
17.41
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include<stdlib.h>
#define N 1001
#define WHITE 0
#define GRAY 1
#define BLACK 2
#define INFTY 1 << 21
using namespace std;
double M[N][N], d[N];
int color[N], p[N], n;
struct Node
{
double x, y, h;
} arr[N];
void prim ()
{
for (int i = 0; i < N; i++)
{
color[i] = WHITE;
d[i] = INFTY;
}
d[0] = 0;
p[0] = -1;
int mincost, u;
while (1)
{
mincost = INFTY;
for (int i = 0; i < n; i++)
{
if (color[i] != BLACK && d[i] < mincost)
{
mincost = d[i];
u = i;
}
}
if (mincost == INFTY) break;
color[u] = BLACK;
for (int v = 0; v < n; v++)
{
if (color[v] != BLACK && M[u][v])
{
d[v] = M[u][v];
p[v] = u;
color[v] = GRAY;
}
}
}
}
int main ()
{
cin >> n;
double x, y, h;
for (int i = 0; i < n; i++)
{
cin >> x >> y >> h;
arr[i].x = x;
arr[i].y = y;
arr[i].h = h;
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (i == j) M[i][j] = 0;
else
{
x = (arr[i].x - arr[j].x) * (arr[i].x - arr[j].x);
y = (arr[i].y - arr[j].y) * (arr[i].y - arr[j].y);
h = (arr[i].h - arr[j].h) * (arr[i].h - arr[j].h);
M[i][j] = sqrt(x + y) + h;
}
}
}
prim();
double ans = 0;
for (int i = 0; i < n; i++) ans += d[i];
printf("%.2f", ans);
system("pause");
return 0;
}