transformer_WSZ
码龄8年
关注
提问 私信
  • 博客:408,018
    408,018
    总访问量
  • 217
    原创
  • 9,201
    排名
  • 390
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:You Only Look Once!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-01-24
博客简介:

Swift's Blog

博客描述:
Swift的个人博客
查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,156
    当月
    12
个人成就
  • 获得617次点赞
  • 内容获得31次评论
  • 获得1,206次收藏
  • 代码片获得694次分享
创作历程
  • 40篇
    2024年
  • 28篇
    2023年
  • 37篇
    2022年
  • 35篇
    2021年
  • 6篇
    2020年
  • 24篇
    2019年
  • 19篇
    2018年
  • 54篇
    2017年
成就勋章
TA的专栏
  • 营销
    1篇
  • 搜广推
    12篇
  • tool
    3篇
  • 笔记
    2篇
  • CV
    1篇
  • LLM
    21篇
  • 深度学习
    19篇
  • aigc
    1篇
  • git
    4篇
  • pytorch学习笔记
    5篇
  • 大数据
    3篇
  • 数据结构
    1篇
  • 强化学习
    2篇
  • Java
    17篇
  • 个人
    12篇
  • Python
    12篇
  • C++
    7篇
  • sql-server
    2篇
  • 算法
    18篇
  • mysql
    3篇
  • objective-c
    5篇
  • ios开发
    14篇
  • linux
    28篇
  • javaweb
    2篇
  • web开发
    9篇
  • oracle
  • 操作系统
    12篇
  • Swift
    1篇
  • javascript
    8篇
  • php
    2篇
  • 机器学习
    21篇
  • 设计模式
    1篇
  • nlp
    15篇
兴趣领域 设置
  • 前端
    vue.jsreact.js
  • 后端
    node.js
  • 移动开发
    flutter
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tensorflow获取tensor形状

【代码】tensorflow获取tensor形状。
原创
发布博客 15 小时前 ·
37 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf1.x实现张量的梯度反转

【代码】tf1.x实现张量的梯度反转。
原创
发布博客 2024.10.17 ·
183 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

DANN & GRL

域自适应是指在目标域与源域的数据分布不同但任务相同下的迁移学习,从而将模型在源域上的良好性能迁移到目标域上,极大地缓解目标域标签缺失严重导致模型性能受损的问题。介绍一篇经典工作more。
原创
发布博客 2024.09.24 ·
500 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

Uplift Model离线评估指标

uplift建模难点在于无法获得个体的ground truth,因为它是反事实的。只能通过构造treatment和control两组镜像人群,对比两组人群的转化增量,来实现模型性能的评估。more。
原创
发布博客 2024.09.16 ·
785 阅读 ·
27 点赞 ·
0 评论 ·
27 收藏

M1 Mac安装Homebrew

M1的MacBook安装Homebrew方法:
原创
发布博客 2024.09.09 ·
290 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

点沙成硅的流程

将一粒沙子转化为芯片的过程是一个复杂而精密的制造流程。芯片制造始于原材料硅的提纯,然后经过多步骤的工艺,最终变成用于计算机、手机等设备的半导体芯片。
原创
发布博客 2024.08.19 ·
223 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

U-Net原理及代码实现

U-Net是医疗领域进行语义分割的利器,随着AIGC的爆火,U-Net已成为Diffusion Model的backbone,有必须详细记录下。more。
原创
发布博客 2024.08.08 ·
608 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

DSSM双塔特征交互

传统的DSSM双塔无法在早期进行user和item侧的特征交互,这在一定程度上降低了模型性能。我们想要对双塔模型进行细粒度的特征交互,同时又不失双塔模型离线建向量索引的解耦性。下面介绍两篇这方面的工作。more。
原创
发布博客 2024.07.09 ·
1004 阅读 ·
25 点赞 ·
0 评论 ·
10 收藏

Learn To Rank

在信息检索中,给定一个query,搜索引擎召回一系列相关的Documents,然后对这些Documents进行排序,最后将Top N的Documents输出。more排序问题最关注的是各Documents之间的相对顺序关系,而不是各个Documents的预测分最准确。
原创
发布博客 2024.07.07 ·
655 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

两种神经网络参数初始化方法

重点介绍一下Xavier和Kaiming初始化:more。
原创
发布博客 2024.06.21 ·
416 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

LLM Inference Performance Engineering

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
原创
发布博客 2024.06.12 ·
411 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

LLaMA2详解

llama系列训练和推理都是right padding:more。
原创
发布博客 2024.05.24 ·
369 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

GPU利用率

英伟达官方的GPU利用率的定义如下:GPUUtilrate=number of active SMnumber of total SM×100%GPU Util rate = \frac{number \ of \ active \ SM}{number \ of \ total \ SM} \times 100\%GPUUtilrate=number of total SMnumber of active SM​×100%上述代码片段将在单个流多处理器(SM)上启动指定的内核(线程)。根据常规理
原创
发布博客 2024.05.20 ·
1272 阅读 ·
21 点赞 ·
0 评论 ·
18 收藏

Attention Sink

论文发现自回归LLM存在的一个有趣现象:对于输入文本最靠前的少量几个token,无论它们在语义上与语言建模任务的相关性如何,大量的注意力分数都会分配给他们,如下图所示:more模型的前两层还能保持attention score更多分配给当前token附近位置的特性,而在其他层,靠前的几个token都会接受到大量的注意力。尽管这些token在语义上很可能并没有什么重要性,但它们却聚集了大量的注意力分数。出现这个现象的原因就是softmax操作。
原创
发布博客 2024.05.12 ·
583 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

RAG讲解

现有的LLM已经具备了理解、生成、逻辑和记忆能力,RAG(Retrieval Augmented Generation)则是为其套上外挂,使LLM能够访问训练数据来源之外的权威知识库,并生成领域特定的内容,而无须重新训练模型。more。
原创
发布博客 2024.05.12 ·
342 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

从loss角度理解LLM涌现能力

本文从预训练loss角度观察了模型涌现能力是如何发生的。其结论也给业界评估模型在下游任务上的性能提供了全新的视角,即预训练loss,而不是模型参数量、数据量、训练计算量。但本文并未从理论角度解释loss与涌现能力的关系,更多地是根据后验进行启发式分析,也未给出2.2的合理说明。但DL一直这么玄学,不是吗?
原创
发布博客 2024.05.12 ·
968 阅读 ·
21 点赞 ·
0 评论 ·
9 收藏

SwiGLU激活函数

SwiGLU激活函数已经成为LLM的标配了。
原创
发布博客 2024.05.09 ·
1179 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

模型训练的显存占用分布

训练过程中,显存消耗主要有模型参数、梯度、optimizer状态值和中间激活值。
原创
发布博客 2024.05.05 ·
226 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

FP16与BF16区别

more二者都是占用16bit空间。模型训练时使用BF16和FP16都可以降低内存使用和传输量,提高训练效率。
原创
发布博客 2024.05.05 ·
1588 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

现代GPU内存分级结构

要实现CUDA高性能编程,就必须对GPU内存结构有深刻的了解。more。
转载
发布博客 2024.04.22 ·
95 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多