负采样后的CTR预估矫正

在搜广推场景中,正负样本不平衡是个普遍现象。通常做法是对负样本进行降采样,但采样后训练的模型预估概率会比实际概率高估。

举例来说,线上真实样本的CTR是0.001,即正负样本比为1:1000。现对负样本降采样 w = 0.01 w=0.01 w=0.01,即采样后正负样本比为1:10,那么训练后的模型预估CTR为0.1,出现高估的情况。

预估率矫正推导如下:

  • N p o s N_{pos} Npos 为线上正样本个数
  • N n e g N_{neg} Nneg 为线上负样本个数
  • N n e g _ d o w n N_{neg\_down} Nneg_down 为降采样后的负样本个数
  • w w w 为降采样概率
  • q q q 为线上CTR
  • p p p 为模型预估CTR

N n e g _ d o w n = N n e g ∗ w p = N p o s N n e g _ d o w n + N p o s q = N p o s N n e g + N p o s 1 p − 1 w = 1 q − 1 q = p p + 1 − p w \begin{aligned} N_{neg\_down} &= N_{neg} * w \\ p &= \frac{N_{pos}}{N_{neg\_down} + N_{pos}} \\ q &= \frac{N_{pos}}{N_{neg}+N_{pos}} \\ \frac{\frac{1}{p}-1}{w} &= \frac{1}{q} - 1 \\ q &= \frac{p}{p + \frac{1-p}{w}} \end{aligned} Nneg_downpqwp11q=Nnegw=Nneg_down+NposNpos=Nneg+NposNpos=q11=p+w1pp


参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值