FLIP解读

FLIP基于CLIP的预训练方法,通过在图片中随机mask部分patch,减少了ViT的计算量,提高训练速度且利用更多batch增强准确性。实验表明,不重构patch有助于模型学习上下文信息,消融实验显示50%的mask比例最优,文本mask则效果稍逊。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FLIP由CLIP改进而来,其思想非常简单,通过在图片侧mask掉相当比例的patch(无须重构patch),实现速度和准确性的双重提升。

模型结构

model

受MAE启发,FLIP对图像进行了mask来预训练。该方法有两方面收益:

  • 速度:ViT对图像编码的计算量大幅减少,训练速度更快
  • 准确性:相同的显存可以存放更多的batch,从而构造更多的图文对进行对比学习,准确性得以提高

exp

值得注意的是,该预训练任务没有重构patch,个人理解:

  • 图片本身就包含了大量的冗余信息,mask掉部分patch不影响图片理解
  • mask部分patch,可以强制两边编码器去学习对方的上下文语义信息

实验结果

FLIP在下游实验的结果一片绿:

downstream

消融实验

在这里插入图片描述

  • 作者尝试在图像上的不同mask比例,50%最佳
  • 作者也尝试了在文本上做mask,但性能略微有所下降
  • 重构patch没有收益

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值