IPW是个非常优雅的纠偏方法。下面介绍如何利用它来实现纠偏:
uplift定义如下:
τ
(
x
)
=
E
P
(
Y
(
1
)
−
Y
(
0
)
∣
x
)
μ
1
(
x
)
=
E
P
(
Y
∣
W
=
1
,
X
=
x
)
μ
0
(
x
)
=
E
P
(
Y
∣
W
=
0
,
X
=
x
)
τ
(
x
)
=
μ
1
(
x
)
−
μ
0
(
x
)
\begin{aligned} \tau(x) &= \mathbb{E}_{\mathbb{P}}(Y(1)-Y(0) \mid x) \\ \mu_1(x) &= \mathbb{E}_{\mathbb{P}}(Y \mid W=1, X=x) \\ \mu_0(x) &= \mathbb{E}_{\mathbb{P}}(Y \mid W=0, X=x) \\ \tau(x) &= \mu_1(x) - \mu_0(x) \end{aligned}
τ(x)μ1(x)μ0(x)τ(x)=EP(Y(1)−Y(0)∣x)=EP(Y∣W=1,X=x)=EP(Y∣W=0,X=x)=μ1(x)−μ0(x)
ESN纠偏:
P
(
Y
,
W
=
1
∣
X
)
⏟
E
S
T
R
=
P
(
Y
∣
W
=
1
,
X
)
⏟
T
R
⋅
P
(
W
=
1
∣
X
)
⏟
π
=
μ
1
⋅
π
P
(
Y
,
W
=
0
∣
X
)
⏟
E
S
C
R
=
P
(
Y
∣
W
=
0
,
X
)
⏟
C
R
⋅
P
(
W
=
0
∣
X
)
⏟
1
−
π
=
μ
0
⋅
(
1
−
π
)
μ
1
=
E
S
T
R
π
μ
0
=
E
S
C
R
1
−
π
τ
=
μ
1
−
μ
0
\begin{aligned} \underbrace{P(Y, W=1 \mid X)}_{E S T R} & =\underbrace{P(Y \mid W=1, X)}_{T R} \cdot \underbrace{P(W=1 \mid X)}_\pi \\ & =\mu_1 \cdot \pi \\ \underbrace{P(Y, W=0 \mid X)}_{E S C R} & =\underbrace{P(Y \mid W=0, X)}_{C R} \cdot \underbrace{P(W=0 \mid X)}_{1-\pi} \\ & =\mu_0 \cdot(1-\pi) \\ \mu_1 &= \frac{ESTR}{\pi} \\ \mu_0 &= \frac{ESCR}{1-\pi} \\ \tau &= \mu_1 - \mu_0 \end{aligned}
ESTR
P(Y,W=1∣X)ESCR
P(Y,W=0∣X)μ1μ0τ=TR
P(Y∣W=1,X)⋅π
P(W=1∣X)=μ1⋅π=CR
P(Y∣W=0,X)⋅1−π
P(W=0∣X)=μ0⋅(1−π)=πESTR=1−πESCR=μ1−μ0
备注:纠偏效果严重依赖于IPW预估的准确性,需根据业务场景谨慎评估。
120

被折叠的 条评论
为什么被折叠?



