另一个博客地址:eremita.lofter.com
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法可以解决多种优化问题,如:TSP问题、生产调度问题、轨道优化问题等,在现代优化算法中占据了重要的地位,本文简要地介绍了遗传算法。
在此之前我们通过一个小故事来通俗地讲解遗传算法:
从前有一群快乐的袋鼠(初代),生活在某某不知名的山上,有的袋鼠喜欢生活在高处,有的袋鼠喜欢生活在山脚,如图:
可是天有不测风云,袋鼠有祸兮旦福。随着全球气候变暖,生活在山脚的袋鼠被热死了(所以说保护环境、减少排放很重要)。但是,生活在山麓和山顶的袋鼠生存了下来,他(她)们互相啪啪啪,生下了下一代(第二代)。
第二代袋鼠继承了父母的好奇心和勇气,有部分袋鼠继续向山顶跑,当然也有一小部分去探索山脚的世界去了。但是,可恶的人类不知道节制,温室效应继续增强,山麓的袋鼠也相继死去,当然,山脚的袋鼠也死了。
值得开心的是,接近山顶的袋鼠还活着诶!!!这群勇敢的袋鼠快乐地生活、繁衍、生活……繁衍,气候也不停地变热。就这样过了很久很久,终于有一只袋鼠跑到了山顶!!!到了山顶!!!到了山顶!!!(重要的事情说三遍)跑到山顶的他也得到了一块巧克力作为奖励,然后,故事快乐的结束了。