平方和的几何解释

平方和的几何解释

高斯小时候被老师问到 1+2++99+100 的和,聪明机智的高斯几乎脱口而出5050。在我们现在看来其实很简单,也就是一个等差数列的求和公式而已:

i=1ni=n(n+1)2
一般地,如果等差数列{ ai }的公差为d,则:
i=1nai=n(n+1)d2

在数学中,我们经常会用到平方和的公式,但是,平方和的公式不是并非如等差数列的求和公式那般直观。因此,若想对平方和公式有更加深入的理解,几何解释是个不错的选择。

i=1ni2=13n(n+1)(n+12)

不失一般性,我们选取n=4来对平方和公式作几何解释。如下左图所示,我们将每个平方项表示成一些方块,然后我们将左图中的方块在右图中展开:

左图右图

细心观察图1和图2的联系,我们看到图2中间部分就是图1的那些方块,因此方块数就是 12+22++n2 个,不仅如此,我们细心地分别看图2的左右两部分,可以明显地看出,两边的方块数都是 12+22++n2 个。又,图二总的方块数为 (2n+1)×(1+2++n) ,聪明的高斯又告诉我们: (1+2++n)=n(n+1)2
所以,综合上面的式子,我们有:

3i=1ni2=(2n+1)×(1+2++n)=(2n+1)n(n+1)2=(n+12)(n+1)n

即:
i=1ni2=13n(n+1)(n+12)

得证。现在,我们只要能记得上述二图, 就再也不会忘记平方和公式了。

:更多平方和的几何解释,详见:正整数的平方和公式是什么?怎么证明?

:python图代码

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from numpy.random import rand
import numpy as np

C = np.zeros([4,4])
fig2 = plt.figure()
for i in range(4):
    for j in range(i+1):
        C[i,j] = C[j,i] = 0.1 * (i+1)
# C[0,0] = 0.1
# C[1,0] = C[0,1] = C[1,1] = 0.2
# C[2,0] = C[0,2] = C[1,2] = C[2,1] = C[2,2] = 0.3
# C[3,0] = C[0,3] = C[1,3] = C[3,1] = C[3,2] = C[2,3] = C[3,3] = 0.4
for i in range(1,1+4):
    plt.subplot(2,2,i)
    plt.pcolor(C[:i,:i],norm=mcolors.NoNorm(),cmap='terrain',edgecolors='k',linewidths=0.3)
    plt.axis([0,4,0,4])
plt.show()


n = 4
block_rows = n
now_row = 0
A = np.zeros([n*(n+1)/2, 2*n+1])
for i in range(n): # i遍历n个blocks
    for block_row in range(block_rows): # block_row遍历一个block的所有行
        for k in range(2*n+1): # k遍历一行的所有单元格
            if k in range(n-i,n+i+1):
                A[now_row,k] = 0.1*(i+1)
            else:
                A[now_row,k] = 0.8+0.05*(i+1)
        now_row += 1
    block_rows -= 1

plt.pcolor(A,norm=mcolors.NoNorm(),cmap='terrain',edgecolors='k',linewidths=0.3)
plt.show()
<think>好的,用户之前问了如何在Tcl中让两个数相乘,现在他们继续问平方和开方怎么做。首先,我需要确认用户是否已经掌握了基本运算,现在想进一步了解更高级的数学操作。 用户可能是在学习Tcl的数学运算,或者是需要在脚本中实现一些数学功能,比如计算几何问题、物理模拟,或者数据处理中的平方和平方根。需要确保回答涵盖这两个操作的不同情况,比如使用变量还是直接数值,如何处理整数和浮点数,以及可能的注意事项。 接下来,我需要回忆Tcl中平方和开方的语法。平方通常用乘号*,比如a*a,或者使用pow函数,比如pow(a,2)。开方的话,可以使用sqrt函数,或者用指数运算pow(a,0.5)。需要注意Tcl的expr命令中函数的调用方式,以及是否需要引入数学库,不过Tcl默认应该已经支持这些基本函数。 然后,用户可能会遇到哪些常见错误?比如忘记使用expr,或者变量引用不正确,或者运算符周围缺少空格。这些在之前的乘法问题中提到过,现在需要再次强调,避免重复错误。此外,开方时如果输入负数,会导致错误,可能需要提醒用户处理非负数的情况。 还要考虑用户是否需要实际的代码示例,比如如何计算平方和平方根,可能还需要展示变量和直接数值的例子。例如,先定义变量,再计算平方,或者直接在expr中使用数字。同时,是否需要说明浮点数与整数的区别,比如sqrt(4)返回2.0而不是2,这时候可能需要转换类型。 另外,用户可能对性能或最佳实践感兴趣,比如使用大括号{}包围表达式以提高效率和安全性,避免注入攻击或其他解析问题。同时,是否需要提到Tcl的数学库版本问题,或者某些函数在不同版本中的兼容性?不过通常sqrt和pow是基本函数,应该广泛支持。 可能的扩展问题:用户之后可能会问如何计算更高次幂或立方根,但当前问题只需要平方和开方,所以保持答案集中在这些点上。但可以简要提及pow函数的通用性,以便用户举一反三。 最后,总结步骤,结构清晰,分点说明平方和开方的不同方法,注意事项,并提供完整示例,确保用户能够直接复制代码并运行测试。检查是否有遗漏的情况,比如处理非整数指数或错误处理,但根据用户的问题,可能不需要深入这些细节,保持回答简洁实用。</think>在 Tcl 中计算**平方**和**开方**可以通过 `expr` 命令结合数学运算符或函数实现。以下是具体方法: --- ### **1. 计算平方** #### **方法 1:直接使用乘号 `*`** ```tcl # 数值的平方 set square [expr {5 * 5}] puts $square ;# 输出 25 # 变量的平方 set a 6 set result [expr {$a * $a}] puts $result ;# 输出 36 ``` #### **方法 2:使用 `pow` 函数** ```tcl # 计算 5 的平方 set square [expr {pow(5, 2)}] puts $square ;# 输出 25.0(结果为浮点数) # 变量的平方 set b 7 set result [expr {pow($b, 2)}] puts $result ;# 输出 49.0 ``` --- ### **2. 计算开方(平方根)** #### **方法 1:使用 `sqrt` 函数** ```tcl # 直接开方 set root [expr {sqrt(25)}] puts $root ;# 输出 5.0 # 变量开方 set c 16 set result [expr {sqrt($c)}] puts $result ;# 输出 4.0 ``` #### **方法 2:使用 `**` 运算符** ```tcl # 计算平方根(等价于 0.5 次方) set root [expr {16 ** 0.5}] puts $root ;# 输出 4.0 ``` --- ### **注意事项** 1. **数值类型**: - `sqrt` 和 `pow` 默认返回浮点数(如 `5.0`),若需整数结果可强制转换: ```tcl set root [expr {int(sqrt(25))}] ;# 输出 5(整数) ``` - 对负数开方会报错(如 `sqrt(-4)`),需确保输入为非负数。 2. **语法规范**: - `expr` 表达式需用 `{}` 包裹,避免特殊字符解析问题。 - 运算符两侧建议保留空格(如 `$a * $a` 而非 `$a*$a`)。 --- ### **完整示例** ```tcl # 计算平方和平方根 set num 9 # 平方 set square [expr {$num * $num}] # 平方根 set root [expr {sqrt($num)}] # 输出结果 puts "$num 的平方是 $square,平方根是 $root" # 输出:9 的平方是 81,平方根是 3.0 ``` 通过上述方法,你可以在 Tcl 中轻松实现平方和开方运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值