直接暴力dfs,保证前面的都能到0以下,当到n-1个的时候,还要保证后一个也要到0一下即可。
通常找最小值,dfs需要把所有情况跑遍,得出最小值。
发现如果最小值很小时,也可以通过从1开始枚举到有合理方案位置,即为最小值。
以下代码用的第一种方法
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std;
int nu[12],n,a,b,ans=0x3f3f3f3f,out[12],out1[12];
void dfs(int x,int c)
{
if(c>=ans) return;
if(x==n)
{
ans=c;
for(int i=1;i<=n;i++)out1[i]=out[i];
}
for(int i=0;;i++)
{
if(nu[x-1]-i*b>=0) continue;
if(i+c>=ans) break;
if(x==n-1&&nu[x+1]-b*i>=0) continue;
out[x]=i;
nu[x-1]-=b*i;nu[x]-=a*i;nu[x+1]-=b*i;
dfs(x+1,c+i);
nu[x-1]+=b*i;nu[x]+=a*i;nu[x+1]+=b*i;
if(nu[x]-a*i<0&&nu[x+1]-b*i<0) break;
}
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++)
scanf("%d",&nu[i]);
dfs(2,0);
printf("%d\n",ans);
for(int i=2;i<n;i++)
for(int j=0;j<out1[i];j++)
printf("%d ",i);
}