Golang编写自定义IP限流中间件

基于令牌桶的限流算法

  • r:每秒钟向桶内放入 r 个令牌,即每隔 1/r秒放一个令牌
  • b:桶的最大容量是 b,桶满后试图再放入的令牌会被丢弃掉
  • 当有人请求 n 个令牌时,如果桶中的令牌数小于n,则请求放阻塞或直接放弃,否则顺利从桶中取走 n 个令牌
    • 当 b > 1 时,任意 1/r 秒内最多可以取走 b 个令牌
      • 限制很短的一个瞬间的一个最高的并发量,b=最高的并发量,r=最短的时间段
    • 当 b = 1 时,每秒钟最多可被取走 r 个令牌
      • 限制每秒钟的最高的QPS:b=1,r=最高的QPS
      • 限制每分钟的最高请求量:把每分钟的请求量/60=转换成1秒钟,赋给 r 就可以了
      • 限制每5分钟、每10分钟,同理

实现高并发限流(使用golang官方限流器)

Go代码

源码地址: GitHub-golang版本

middleware/rateLimiterMiddleware.go

package middleware

import (
	"net/http"
	"time"

	"github.com/gin-gonic/gin"
	"golang.org/x/time/rate"
)

var Limiter *rate.Limiter

// 定义一个中间件函数来进行限流
func RateLimiterMiddleware() gin.HandlerFunc {
	return func(c *gin.Context) {
		if !Limiter.AllowN(time.Now(), 1) {
			c.JSON(http.StatusTooManyRequests, gin.H{"message": "Rate limit exceeded"})
			// 设置休眠和业务时长一样,为了更好从日志出看出规则
			time.Sleep(50 * time.Millisecond)
			c.Abort()
			return
		}

		c.Next()
	}
}

main.go

func main() {
	r := gin.Default()
	
	// 创建一个限流器,每秒允许最多10个请求
	middleware.Limiter = rate.NewLimiter(rate.Limit(10), 1)

	// 使用限流中间件
	r.Use(middleware.RateLimiterMiddleware())

	r.GET("/api/resource", func(c *gin.Context) {
		time.Sleep(50 * time.Millisecond)
		c.JSON(http.StatusOK, gin.H{"message": "Resource accessed"})
	})

	r.Run(":8080")
}

测试记录

ab -t 1 -c 1 http://127.0.0.1:8080/api/resource

使用ab压力测试,并发量为1的(相当于串行),在1秒内不断发出请求(算下来,每个请求50ms,总共能发出20个请求)

结果预测:1秒内最多生成10个令牌,而总共有20个串行的请求,结果应该是1个成功(在50ms结束),1个失败(后50ms内还未有新的令牌生成),1个成功,1个失败。。。

结果输出(符合预期)

在这里插入图片描述
在这里插入图片描述

升级:根据每个IP地址进行限流

Go代码

源码地址: GitHub-golang版本

middleware/ipRateLimiterMiddleware.go

package middleware

import (
	"net/http"
	"sync"
	"time"

	"github.com/gin-gonic/gin"
	"golang.org/x/time/rate"
)

var IPLimiter *IPRateLimiter

func NewIPRateLimiter() *IPRateLimiter {
	return &IPRateLimiter{
		limiter: make(map[string]*rate.Limiter),
	}
}

type IPRateLimiter struct {
	mu      sync.Mutex
	limiter map[string]*rate.Limiter
}

func (i *IPRateLimiter) GetLimiter(ip string) *rate.Limiter {
	i.mu.Lock()
	defer i.mu.Unlock()

	limiter, exists := i.limiter[ip]
	if !exists {
		limiter = rate.NewLimiter(2, 5) // 每秒2个请求,桶容量为5
		i.limiter[ip] = limiter
	}

	return limiter
}

// 定义一个中间件函数来进行限流
func IPRateLimiterMiddleware() gin.HandlerFunc {
	return func(c *gin.Context) {
		ip := c.ClientIP()

		limiter := IPLimiter.GetLimiter(ip)

		if !limiter.Allow() {
			c.JSON(http.StatusTooManyRequests, gin.H{"message": "Rate limit exceeded"})
			// 设置休眠和业务时长一样,为了更好从日志出看出规则
			time.Sleep(50 * time.Millisecond)
			c.Abort()
			return
		}

		c.Next()
	}
}

main.go

func main() {
	r := gin.Default()

	// 创建IP限流器
	middleware.IPLimiter = middleware.NewIPRateLimiter()

	// 使用限流中间件
	r.Use(middleware.IPRateLimiterMiddleware())

	r.GET("/api/resource", func(c *gin.Context) {
		time.Sleep(50 * time.Millisecond)
		c.JSON(http.StatusOK, gin.H{"message": "Resource accessed"})
	})

	r.Run(":8080")
}

测试记录

ab -t 1 -c 1 http://127.0.0.1:8080/api/resource

使用ab压力测试,并发量为1的(相当于串行),在1秒内不断发出请求(算下来,每个请求50ms,总共能发出20个请求)

结果预测:1秒内最多生成2个令牌,桶容量为5 代表在1/2秒内的最大并发量是5,总共有20个串行的请求,结果应该是先成功5个(桶容量全使用成功), 之后剩余成功的是1个,其余全部失败

  1. 当程序启动时,限流器初始化,桶是空的,没有令牌。
  2. 在每秒的前两次令牌生成中,每次生成2个令牌,并放入桶中。
  3. 在第3秒,生成的2个令牌中只有1个能够被放入桶中,因为桶已经满了。
  4. 当使用ab发出请求时,前5个请求依次拿到了令牌并成功,每个请求耗时50ms。此时总耗时为250ms。
  5. 第6个请求在300ms,第7个请求在350ms,第8个请求在400ms,第9个请求在450ms,第10个请求在500ms。
  6. 因为限流器的速率是每秒2个请求,也就是每500ms生成一个令牌。 第500ms时新的令牌生成,所以第6-10请求期间,是没有令牌的,所以都请求失败,而11个请求时有新令牌生成,所以能成功。
  7. 之后的请求以此类推,需要等待新令牌生成。

结果输出(符合预期)

在这里插入图片描述
在这里插入图片描述

Golang是一种开源的编程语言,它具有高效、简洁和并发性强的特点,非常适合用于构建高性能的网络应用程序。在Golang中,可以使用一些库和技术来实现IP防刷和限流的功能。 一种常见的方法是使用令牌桶算法来进行限流。令牌桶算法基于一个令牌桶,其中包含了一定数量的令牌。每当有请求到达时,就会从令牌桶中取出一个令牌,如果令牌桶中没有足够的令牌,则请求会被拒绝或者延迟处理。这种方式可以有效地控制请求的速率,防止恶意刷接口或者DDoS攻击。 在Golang中,可以使用一些第三方库来实现令牌桶算法。例如,可以使用"golang.org/x/time/rate"包来实现基于令牌桶的限流功能。该包提供了Rate类型,可以用于定义每秒允许通过的请求数量,并且可以使用Allow方法来判断是否允许处理请求。 下面是一个简单的示例代码,演示了如何使用"golang.org/x/time/rate"包来实现IP防刷和限流: ```go package main import ( "fmt" "net" "net/http" "time" "golang.org/x/time/rate" ) func main() { // 创建一个限流器,每秒允许通过3个请求 limiter := rate.NewLimiter(3, 1) // 创建一个HTTP服务器 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) { // 获取请求的IP地址 ip, _, _ := net.SplitHostPort(r.RemoteAddr) // 判断是否允许处理请求 if limiter.Allow() { // 允许处理请求 fmt.Fprintf(w, "Hello, World!") } else { // 请求被限流 http.Error(w, http.StatusText(http.StatusTooManyRequests), http.StatusTooManyRequests) } }) // 启动HTTP服务器 http.ListenAndServe(":8080", nil) } ``` 在上面的示例代码中,我们创建了一个限流器,每秒允许通过3个请求。然后,在处理HTTP请求时,我们获取请求的IP地址,并使用限流器判断是否允许处理请求。如果允许处理请求,则返回"Hello, World!";如果请求被限流,则返回429 Too Many Requests错误。 这只是一个简单的示例,实际应用中可能需要更复杂的逻辑来判断是否需要限流,例如根据不同的IP地址或者用户身份进行不同的限制。同时,还可以结合其他技术,如缓存、分布式限流等来提高系统的稳定性和安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值