题目大意
给出一个长度为n的字符串,求它前k长的回文子串长度乘积。 n≤106,k≤1012 n ≤ 10 6 , k ≤ 10 12
解题报告
某神犇曾经说过:“ 水水博客有利身体健康。”
所以这题就是Manacher裸题,因为如果[L,R]是回文子串,那么[L+1,R-1]也是回文子串。所以前缀和统计就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int tt=19930726,maxn=2000005;
int n,p[maxn],mx,id;
LL k,ans,sum[maxn],tem;
char s[maxn];
LL ksm(int x,LL y){
LL sum=1,w=x;
for (;y;y>>=1,w=w*w%tt) if (y&1) sum=sum*w%tt;
return sum;
}
int main()
{
freopen("cheer.in","r",stdin);
freopen("cheer.out","w",stdout);
scanf("%d%lld",&n,&k); char ch=getchar(); ans=1;
while ('a'>ch||ch>'z') ch=getchar(); s[1]='#'; tem=k;
for (int i=1;i<=n;i++,ch=getchar()) {s[i<<1]=ch; s[(i<<1)+1]='#';}
n=(n<<1)+1; mx=0; memset(sum,0,sizeof(sum));
for (int i=1;i<=n;i++){
p[i]=(mx>i)?min(p[2*id-i],mx-i):1;
while (i-p[i]>=1&&i+p[i]<=n&&s[i-p[i]]==s[i+p[i]]) p[i]++;
if (p[i]+i>mx) {mx=p[i]+i; id=i;}
if (i%2==0) sum[p[i]-1]++;
}
for (int i=n;i&&tem;i--)
if (sum[i]&&(i&1)){
ans=ans*ksm(i,min(sum[i],tem))%tt;
sum[i-2]+=sum[i];
tem-=min(sum[i],tem);
}
printf("%lld",ans);
return 0;
}