[Trie+贪心]BZOJ 4567 [Scoi2016]背单词 题解

题目大意

给出 n n 个字符串,要求给这n个字符串编号1~n,使其代价和最小。
对第 i i 个字符串编号为vi,代价的计算方式如下:

1.如果存在字符串 j j 满足j i i 的后缀,且vi<vj,那么 i i 的代价为n2
2.如果字符串 i i 没有对应的后缀,那么代价为vi
3.如果存在字符串 j j 满足j i i 的后缀,而且没有vi<vj,那么选编号最大的 vj v j ,代价为 vivj v i − v j

数据保证任意两个字符串不相等,100%数据满足 n105,|S|510000 n ≤ 10 5 , ∑ | S | ≤ 510000

解题报告

如果只有2,3,可以证明出最大代价和不超过 n(n+1)2n2 n ∗ ( n + 1 ) 2 ≤ n 2 ,所以如果 i i j的后缀,那么 vi<vj v i < v j

后缀满足传递性,而且由于数据保证任意两个字符串不相等,所以不存在互相为后缀,所以……可以建一棵树,如果Si是Sj的长度最长的出现过的后缀,那么 i>j i − > j 建一条边,没有后缀的可以设一个 root=0 r o o t = 0 ,这个 root r o o t 就是这棵树的根。

此时问题变成了给有根树除根之外的每个点标号,满足每个点的标号互不相同且在1到N之间,使得每个点的标号大于其父节点的标号,且所有点的标号减去其父节点的标号之和最小。

在网上查了一下,这道题是一个经典的贪心问题。发现如果一个节点的子树编号在一个连续的区间内时最优。那么贪心策略为DFS有根树,每一次选择子树最小的子节点递归下去,如果不存在子节点则返回。然后问题就剩下建有根树,如果把字符串倒过来,这题就成了前缀,然后Trie求祖先就很简单了……

示例代码

BZOJ 4567 LibreOJ 2012

#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 200005
#define maxe 400005
using namespace std;
int n,m,len,a[maxn],trie[510005][26],tot,son[maxe],nxt[maxe],lnk[maxn],num[maxn];
bool vs[510005];
char s[510005];
long long ans;
void trie_Insert(){
    int now=0,L=strlen(s+1);
    for (int i=L;i;i--){
        if (!trie[now][s[i]-'a']) trie[now][s[i]-'a']=++len;
        now=trie[now][s[i]-'a'];
    }
    vs[now]=1;
}
void _add(int x,int y){son[++tot]=y; nxt[tot]=lnk[x]; lnk[x]=tot;}
void _dfsa(int x,int fa){
    if (vs[x]) {_add(fa,++m); fa=m;}
    for (int i=0;i<26;i++) if (trie[x][i]) _dfsa(trie[x][i],fa);
}
void _dfsb(int x){
    num[x]=1; int k=0;
    for (int j=lnk[x];j;j=nxt[j]) {_dfsb(son[j]); num[x]+=num[son[j]];}
    for (int j=lnk[x];j;j=nxt[j]) a[++k]=num[son[j]];
    sort(a+1,a+k+1);
    for (int i=1;i<=k;i++) {ans+=a[i-1]+1; a[i]+=a[i-1];}
}
int main()
{
    freopen("recite.in","r",stdin);
    freopen("recite.out","w",stdout);
    scanf("%d",&n); len=m=ans=0;
    memset(trie,0,sizeof(trie));
    for (int i=1;i<=n;i++){scanf("%s",s+1); trie_Insert();}
    _dfsa(0,0); _dfsb(0);
    printf("%lld",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Trie字典树的Java代码实现可以分为以下几部分: 1. 定义Trie节点类,包含children数组和isEndOfWord标识,用于表示是否是单词的结尾。 2. 定义Trie类,包含插入、查找和删除操作。 3. 在Trie类中实现插入操作,遍历字符串每一个字符,在Trie树中寻找对应节点,如果不存在则新建节点。 4. 在Trie类中实现查找操作,遍历字符串每一个字符,在Trie树中寻找对应节点,如果找到最后一个字符对应的节点的isEndOfWord标识为true,则说明字符串是单词。 5. 在Trie类中实现删除操作,遍历字符串每一个字符,在Trie树中寻找对应节点,如果找到最后一个字符对应的节点的isEndOfWord标识为true,则将其设为false,并删除空节点。 如果需要完整代码和注释请告诉我。 ### 回答2: Trie(字典树)是一种常用的数据结构,用于高效地存储和查找字符串。下面是Trie字典树的Java代码实现,用于返回单词。 ```java class TrieNode { private TrieNode[] children; private boolean isEndOfWord; public TrieNode() { children = new TrieNode[26]; // 字母表的大小为26 isEndOfWord = false; } public void insert(String word) { TrieNode curr = this; for (char c : word.toCharArray()) { if (curr.children[c - 'a'] == null) { curr.children[c - 'a'] = new TrieNode(); } curr = curr.children[c - 'a']; } curr.isEndOfWord = true; } public boolean search(String word) { TrieNode node = searchPrefix(word); return node != null && node.isEndOfWord; } public boolean startsWith(String prefix) { TrieNode node = searchPrefix(prefix); return node != null; } private TrieNode searchPrefix(String prefix) { TrieNode curr = this; for (char c : prefix.toCharArray()) { if (curr.children[c - 'a'] == null) { return null; } curr = curr.children[c - 'a']; } return curr; } } public class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { root.insert(word); } public boolean search(String word) { return root.search(word); } public boolean startsWith(String prefix) { return root.startsWith(prefix); } } public class Main { public static void main(String[] args) { Trie trie = new Trie(); trie.insert("apple"); trie.insert("app"); System.out.println(trie.search("apple")); // 输出:true System.out.println(trie.startsWith("app")); // 输出:true System.out.println(trie.search("banana")); // 输出:false } } ``` 以上代码中,`TrieNode`表示Trie的节点,`Trie`表示Trie树的结构。其中`TrieNode`类包含了插入单词、查找单词(完全匹配)以及查找前缀的功能。`Trie`类则是对外提供插入、查找单词和前缀的方法。 在`main`方法中,我们演示了如何使用`Trie`类来插入和查找单词。首先,我们插入了两个单词"apple"和"app"。然后分别调用`search`方法来查找"apple"和"banana",以及`startsWith`方法来查找以"app"开头的单词。最后,打印出对应的结果,即是否找到了对应的单词或前缀。 以上是Trie字典树的Java代码实现,用于返回单词。 ### 回答3: Trie字典树是一种经典的数据结构,用于高效地存储和查找字符串集合。下面是一个基于Java的Trie字典树的代码实现,可以实现返回单词的功能: ```java class TrieNode { private final int ALPHABET_SIZE = 26; private TrieNode[] children; private boolean isEndOfWord; public TrieNode() { children = new TrieNode[ALPHABET_SIZE]; isEndOfWord = false; } } class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); int index = ch - 'a'; if (current.children[index] == null) { current.children[index] = new TrieNode(); } current = current.children[index]; } current.isEndOfWord = true; } public boolean search(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); int index = ch - 'a'; if (current.children[index] == null) { return false; } current = current.children[index]; } return current != null && current.isEndOfWord; } public List<String> getAllWords() { List<String> result = new ArrayList<>(); TrieNode current = root; StringBuilder sb = new StringBuilder(); getAllWordsUtil(current, sb, result); return result; } private void getAllWordsUtil(TrieNode node, StringBuilder sb, List<String> result) { if (node == null) { return; } if (node.isEndOfWord) { result.add(sb.toString()); } for (int i = 0; i < ALPHABET_SIZE; i++) { if (node.children[i] != null) { sb.append((char)('a' + i)); getAllWordsUtil(node.children[i], sb, result); sb.deleteCharAt(sb.length() - 1); } } } } public class Main { public static void main(String[] args) { Trie trie = new Trie(); String[] words = {"hello", "world", "java", "programming"}; for (String word : words) { trie.insert(word); } List<String> allWords = trie.getAllWords(); System.out.println("All words in trie: " + allWords); } } ``` 上述代码中,TrieNode类表示字典树的节点,包括一个指向子节点的数组和一个标记,用于表示节点是否是某个单词的结尾。Trie类封装了字典树的操作,包括插入单词、查找单词和返回所有单词的功能。在代码的主函数中,我们创建一个Trie对象并插入一些单词,然后调用getAllWords()方法返回字典树中的所有单词。最后,打印出返回的单词列表。 希望以上解答对您有所帮助,如有更多疑问,请继续追问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值