解决:ActiveX控件不能使用

有些古董网站是包含了IE浏览器的ActiveX控件,如果不加载ActiveX控件就会导致部分页面不能显示,甚至检索功能都用不了。

点名某某大学的校内学位论文网站(我是一个没有感情的杀手

解决ActiveX控件不能使用,分三个步骤:

1.设置IE的安全配置。

单击菜单栏的“工具”->“Internet选项”->“安全”选项卡->“自定义级别”。

把“下载已签名的Activex控件”和“Activex控件和插件”选为启用。再确定。

2.重启计算机。配置才会生效。

3.先确定一下配置是不是改好了。然后登录需要ActiveX控件的网站。

如若还不能正常显示,则打开菜单栏的“工具”,在“Activex筛选”前打勾。

刷新页面。

如若还不能正常显示,则打开菜单栏的“工具”,选择“兼容视图设置”,将该网站“添加”至兼容网站。刷新即可。

### 使用Python进行多视角图像的三维重建 #### 方法概述 多视角图像的三维重建通常涉及多个处理阶段,包括但不限于拍摄场景多视角的图像、建立这些图像之间的联系(Data Association),随后执行SFM(Structure from Motion)稀疏重建以及MVS(Multi-View Stereo)稠密重建[^2]。 #### 库的选择 对于实现上述过程,存在多种开源库可供选择: - **OpenCV**: 提供了丰富的计算机视觉算法,适用于特征检测与描述子提取、基本/本质矩阵估计等功能。在SfM流程中用于初步匹配和基础几何关系计算。 - **Colmap**: 是一个专门针对大规模SfM和MVS设计的强大工具包,能够高效完成从图片集到密集点云乃至纹理化网格模型的一系列操作。其接口友好,易于集成至其他项目当中。 - **OpenMVG/OpenMVS**: 前者专注于解决SfM问题,后者则更侧重于由粗略点云生成精细表面模型的任务。两者经常联合使用来构建完整的3D建模流水线。 #### 实现步骤示例 下面给出一段简单的代码片段展示如何利用`colmap`命令行工具配合Python脚本调用来简化整个工作流的一部分——即从一组未经处理的照片创建初始的稀疏点云表示形式。 ```bash # 安装 Colmap 和必要的依赖项 pip install colmap-python ``` ```python import subprocess from pathlib import Path def run_colmap(image_dir, output_path): """ 利用 COLMAP 运行 SfM 流程 参数: image_dir (str): 存储输入照片的位置路径字符串. output_path (str): 输出文件夹位置路径字符串. 返回值: None """ db_file = str(Path(output_path)/'database.db') sparse_folder = str(Path(output_path)/'sparse') # 创建数据库并添加图像 cmd_create_db = ['colmap', 'feature_extractor', '--ImageReader.camera_model', 'SIMPLE_PINHOLE', '--image_path', image_dir, '--database_path', db_file] # 特征匹配 cmd_match_features = ['colmap', 'exhaustive_matcher', '--database_path', db_file] # 执行增量式SfM cmd_sfm = ['colmap', 'mapper', '--image_path', image_dir, '--output_path', sparse_folder] try: for command in [cmd_create_db, cmd_match_features, cmd_sfm]: result = subprocess.run(command, check=True) print(f"Sparse reconstruction completed successfully at {sparse_folder}") except Exception as e: print(e) if __name__ == "__main__": images_directory = "/path/to/images" project_output = "./reconstruction_results" run_colmap(images_directory, project_output) ``` 这段程序展示了怎样通过调用COLMAP的不同模块逐步建立起关于给定图像集合的空间理解。实际应用时可能还需要考虑更多细节配置选项以适应特定需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值