python实现波士顿房价预测---(1)

文章介绍了使用Python和numpy实现神经网络来预测波士顿房价的线性回归模型。通过建立模型,定义损失函数(均方误差),并探讨了为何选择均方误差的原因。数据预处理包括数据读取、归一化,模型设计涉及单层和两层神经网络结构。最后,文章提到了训练过程中的梯度下降算法及其在寻找损失函数最小值时的重要性。
摘要由CSDN通过智能技术生成

波士顿房价预测

目标

这是一个经典的机器学习回归场景,我们利用Python和numpy来实现神经网络。该数据集统计了房价受到13个特征因素的影响,如图1所示。
在这里插入图片描述对于预测问题,可以根据预测输出的类型是连续的实数值,还是离散值,区分是回归还是分类问题。**因为房价是一个连续值,这是一个回归任务。**下面利用简单的线性回归来解决这个问题,并利用神经网络来实现这个模型。

线性回归模型

假设房价和各个影像因素之间的函数关系是:
y = ∑ j = 1 M x j w j + b y= \sum_{j=1}^{M}x_jw_j + b y=j=1Mxjwj+b
模型的目标就是通过拟合数据来求出 w j w_j wj b b b两个参数。线性回归模型采用均方误差MSE损失函数( L o s s Loss Loss),用以衡量预测房价和真实值的差异,公式:

M S E = 1 N ∑ i = 1 N ( Y i ∧ − Y i ) 2 MSE=\frac{1}{N}\sum_{i=1}{N}(Y_i^{\wedge} - Y_i)^2 MSE=N1i=1N(YiYi)2

思考:为什么要以均方误差为损失函数?考虑到便于求解。

线性回归的神经网络结构

神经网络结构就是一个个神经元加层来组成。线性回归认为是神经网络模型的一种简单特例,是一个只有加权求和,没有非线性变换的神经元,如图2:。
在这里插入图片描述
两层神经网络
在这里插入图片描述
深度学习不仅实现了模型的端到端学习,还推动了人工智能进入工业大生产阶段,产生了标准化、自动化和模块化的通用框架。不同场景的深度学习模型具备一定的通用性,五个步骤即可完成模型的构建和训练。如图3所示。
在这里插入图片描述### 数据处理

数据探查
import numpy as np
import json
# 读入训练数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
  • 数据变形
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 
                 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape) # 将数据做了转化样本总数是506个样本
  • 划分数据集
    将数据集划分训练集和测试集,训练集用于确定模型的参数,测试集用于评估模型的效果。图5:
    在这里插入图片描述上学时总有一些自作聪明的同学,平时不认真学习,考试前临阵抱佛脚,将习题死记硬背下来,但是成绩往往并不好。因为学校期望学生掌握的是知识,而不仅仅是习题本身。另出新的考题,才能鼓励学生努力去掌握习题背后的原理。同样我们期望模型学习的是任务的本质规律,而不是训练数据本身,模型训练未使用的数据,才能更真实的评估模型的效果。
# 数据集划分操作
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
training_data.shape
# print(data.shape)
  • 数据集归一化
    利用最大值最小值归一方法,使得每个特征的值都是被缩放到[0,1]之间,这样做的好处有:1、模型训练更加高效,特征前的权重大小可以代表该变量对预测结果的贡献度。
maximums, minimums = \
                     training_data.max(axis=0), \
                     training_data.min(axis=0), 
# 对数据进行归一化处理
for i in range(feature_num):
    data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
  • 将上述过程封装为函数
def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值
    maximums, minimums = training_data.max(axis=0), \
                            training_data.min(axis=0)
    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

获取数据

# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:] # 实际值

模型设计

一层神经网络设计

模型的设计是深度学习模型关键要素之一,称为网络结构。相当于模型的假设空间,既是实现模型的“前向计算”(从输入到输出)过程。
如果将输入和输出都用向量表示,输入特征x有13个向量,y有1个向量。那么权重参数就是13*1。

w = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0] #第一层的权重参数
w_t = np.array(w).reshape([13, 1]) # 相当于矩阵的转置
w_t.shape
# 一个特征列就是一个向量

假设第一个样本x[0]和一层神经网络进行运算。 y = x . w T y=x.w^T y=x.wT运算逻辑。其中 x [ 0 ] = x 1 , x 2 , . . . x 13 x[0]={x_1,x_2,...x_{13}} x[0]=x1,x2,...x13,x [0]的shape是(1,13), w T w^T wT的维度是(13,1),刚好满足两个矩阵乘法的运算原则。

x1=x[0] #获取第一个样本
print(x1.shape)
t = np.dot(x1, w_t) 
print(t.shape) 
# 我们发现样本的特征向量与参数向量相乘的结果是scaler。
# 矩阵的乘法(1,13)(13,1) A*B其中A的列要和B的行相等才可进行矩阵的乘法运算。
b = -0.2
z = t + b
print(z)

完整的线性回归计算公式是: z = t + b z=t+b z=t+b,b是初始化偏移量,以上从特征[0]到计算输出值的过程就是“前向计算”。
定义一个类方便后面调用:

class MyNetwork(object):
    def __init__(self, num_of_weights):
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights,1)
        self.b = 0.

    def forward_m(self,x):
        # 表示的是前向计算
        res = np.dot(x,self.w) +self.b
        return res
二层神经网络

定义两层的神经网络,其中需要注意的地方:输入数据是直接和第一层进行 x . w T x.w^T x.wT运算,第一层每个神经元的输出则是做为第二层每个神经元的输入x。那么在第二层神经运算是 w . x w.x w.x,就是对应位置元素相乘 [ x 1 1 . w 1 1 , x 1 2 . w 1 2 , x 1 3 . w 1 3 , . . . x 1 13 . w 1 13 ] [ x_1^1.w_1^1,x_1^2.w_1^2,x_1^3.w_1^3,...x_1^{13}.w_1^{13}] [x11.w11,x12.w12,x13.w13,...x113.w113],在与第二层的权值参数 w 2 w_2 w2进行运算。

# 定义两层神经网络输出
class My2Network(object):
    def __init__(self, num_of_weights):
        np.random.seed(0)
        # 两层神经网络共享权值w 
        self.w = np.random.randn(num_of_weights,1)
        self.ww = np.random.randn(num_of_weights,1)
        self.b = 0.

    def forword(self,x):
        # 前向计算有两层神经网络
        z_1 = np.dot(x,self.w)
        # 计算第一层输出做为第二层的输入
        out_1 = self.w.reshape([1,13]) * x
        z_2 = np.dot(out_1,self.ww)
        return z_1 + z_2 + self.b

训练配置

模型设计完成后,需要通过训练配置寻找模型的最优值,即通过损失函数来衡量模型的好坏。训练配置也是深度学习模型关键要素之一。
通过模型计算 x 1 x_1 x1表示的影响因素所对应的房价应该是z, 但实际数据告诉我们房价是y。这时我们需要有某种指标来衡量预测值z跟真实值y之间的差距。对于回归问题,最常采用的衡量方法是使用均方误差作为评价模型好坏的指标,公式为:
L o s s = ( y − z ) 2 Loss = (y-z)^2 Loss=(yz)2
Loss就是损失函数,衡量模型好坏的指标。在回归问题中一般是均方误差作为损失函数,而在分类问题中采用交叉熵作为损失函数。
x 1 x_1 x1样本的损失:

loss = (y_1 - res_1)*(y_1-res_1)
print(loss)

因为在计算损失函数需要把每个样本的损失函数得到,求和在平均。
L o s s = 1 N ∑ i = 1 N ( y i − z i ) 2 Loss=\frac{1}{N}\sum_{i=1}^{N}(y_i - z_i)^2 Loss=N1i=1N(yizi)2
在前Network类中增加loss函数。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)
        return cost

训练过程

在模型的前面两部完成,接下来就是求解参数 w , b w,b wb的数值,这就是模型训练的过程。求解w和b使得损失函数取得极小值。
e g . eg. eg. 下面给出一个微积分的案例:一个曲线在某点的导数。导数等于在该点处的切线的斜率。
在这里插入图片描述
上图曲线在极值点处的斜率等于0,既是函数的极值点。那么损失函数的取值为下面方程组的解:
∂ L ∂ w = 0 \frac{\partial L}{\partial w} = 0 wL=0
∂ L ∂ b = 0 \frac{\partial L}{\partial b} = 0 bL=0
上述两个方程组的解就是最后模型训练获取到的参数。但是这种方法有个缺点:当模型中含有非线性变换,则不好计算。我们引入一种普世的方法——梯度下降法

  • 梯度下降算法
    在现实中存在大量函数正向求解容易,但是反向求解不容易,被称为单向函数。神经网络的损失函数就是单向函数。
    这种情况我们可以在现实生活中类比一个想从山峰走到山谷的盲人。他看不见山谷在哪儿(无法逆向求解损失函数为0时的参数值),但是可以伸出脚探索身边的坡度(当前点的导数,梯度)。所以求解Loss的最小值过程就是:在从当前参数取值,一步步按照梯度的反方向下降。直到到达最低点。
    下面。我们随机从损失函数中去参数 w 5 , w 9 w_5,w_9 w5,w9看看他们的变化情况。
    L = L ( w 5 , w 9 ) L=L(w_5,w_9) L=L(w5,w9)
    我们将 [ w 0 , w 1 , . . . 2 12 ] [w_0,w_1,...2_{12}] [w0,w1,...212]中除去 w 5 , w 9 w_5,w_9 w5,w9之前的参数和b全部固定下来。可以用图画出 L ( w 5 , w 9 ) L(w_5,w_9) L(w5,w9)的形式。
net = Network(13)
losses = []
#只画出参数w5和w9在区间[-160, 160]的曲线部分,以及包含损失函数的极值
w5 = np.arange(-160.0, 160.0, 1.0)
w9 = np.arange(-160.0, 160.0, 1.0)
losses = np.zeros([len(w5), len(w9)])

#计算设定区域内每个参数取值所对应的Loss
for i in range(len(w5)):
    for j in range(len(w9)):
        net.w[5] = w5[i]
        net.w[9] = w9[j]
        z = net.forward(x)
        loss = net.loss(z, y)
        losses[i, j] = loss

#使用matplotlib将两个变量和对应的Loss作3D图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)

w5, w9 = np.meshgrid(w5, w9)

ax.plot_surface(w5, w9, losses, rstride=1, cstride=1, cmap='rainbow')
plt.show()

在这里插入图片描述观察上述曲线呈现出“圆滑”的坡度,这正是我们选择以均方误差作为损失函数的原因之一。图6 呈现了只有一个参数维度时,均方误差和绝对值误差(只将每个样本的误差累加,不做平方处理)的损失函数曲线图。
在这里插入图片描述由此可见,均方误差表现的“圆滑”的坡度有两个好处:

  • 曲线在最低点出是可导的。
  • 越接近最低点,曲线的坡度逐渐放缓,有助于通过当前的梯度来判断接近最低点的程度(是否逐渐减少步长,以免错过最佳点)。

然而绝对值误差事不具备的。这也是损失函数的设计不仅仅要考虑“合理性”,还要追求“易解性”的原因。

后面的内容请查看下一篇博客:

你在学习Python数据分析的时候,是否遇到过在这些问题? 别慌!这些都是数据科学入门常见问题。从入门到上手再到解决实际问题,数据科学看似复杂,但如果你掌握了正确的学习方法,完全可以极速入门。 【职场人进阶必备  数据分析/挖掘一点通】 如今的职场上,90%以上的岗位都会涉及数据问题。 以产品文案岗位为例,在一个新产品推向市场之前,文案需要考虑: 此时,可以关注一下市场上已有的相关产品推广数据,如:哪些文案打开率更高?哪些文案转化更好?目标用户的购买习惯如何? 以此作为下一步工作开展的依据,对产品文案工作者来说,可以少走很多弯路。 学会数据分析/挖掘,等于站巨人的肩膀上工作,轻松且高效。 【爬虫、数据分析、数据挖掘知识点三合一】数据问题一网打尽 本课程将知识点悉数融入实战项目,不空谈语法,帮助学员在实践中获取知识,目标是:让学员能自主完成数据采集、数据分析与数据挖掘。 学习完本课程,你可以熟练掌握: 【实战案例超实用,轻松拥有“睡后收入”!】 本课程以股票案例为主线,串联爬虫、数据分析以及数据挖掘多个知识点。 通过实战案例演练,你可以全面掌握股票收益的分析和预判方法,在收获新技能的同时,也有机会获得“睡后收入”! 四大优势: 三重权益:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值