问题:什么是mogodb?
MongoDB[2] 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
问题:有什么特点?
它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:
*面向集合存储,易存储对象类型的数据。
*模式自由。
*支持动态查询。
*支持完全索引,包含内部对象。
*支持查询。
*支持复制和故障恢复。
*使用高效的二进制数据存储,包括大型对象(如视频等)。
*自动处理碎片,以支持云计算层次的扩展性。
*支持RUBY,PYTHON,JAVA,C++,PHP,C#等多种语言。
*文件存储格式为BSON(一种JSON的扩展)。
*可通过网络访问。
数据库操作:增,删,查,改
问题:mongodb使用场景?
案例1
用在应用服务器的日志记录,查找起来比文本灵活,导出也很方便。也是给应用练手,从外围系统开始使用MongoDB。
用在一些第三方信息的获取或者抓取,因为MongoDB的schema-less,所有格式灵活,不用为了各种格式不一样的信息专门设计统一的格式,极大的减少开发的工作。
案例2
mongodb之前有用过,主要用来存储一些监控数据,No schema 对开发人员来说,真的很方便,增加字段不用改表结构,而且学习成本极低。
案例3
使用MongoDB做了O2O快递应用,·将送快递骑手、快递商家的信息(包含位置信息)存储在 MongoDB,然后通过 MongoDB 的地理位置查询,这样很方便的实现了查找附近的商家、骑手等功能,使得快递骑手能就近接单,目前在使用MongoDB 上没遇到啥大的问题,官网的文档比较详细,很给力。
如果你还在为是否应该使用 MongoDB,不如来做几个选择题来辅助决策(注:以下内容改编自 MongoDB 公司 TJ 同学的某次公开技术分享)。
应用特征 | Yes / No |
应用不需要事务及复杂 join 支持 | 必须 Yes |
新应用,需求会变,数据模型无法确定,想快速迭代开发 | ? |
应用需要2000-3000以上的读写QPS(更高也可以) | ? |
应用需要TB甚至 PB 级别数据存储 | ? |
应用发展迅速,需要能快速水平扩展 | ? |
应用要求存储的数据不丢失 | ? |
应用需要99.999%高可用 | ? |
应用需要大量的地理位置查询、文本查询 | ? |
如果上述有1个 Yes,可以考虑 MongoDB,2个及以上的 Yes,选择MongoDB绝不会后悔。
问题:怎么使用mogodb?
作用 | MySQL | MongoDB |
|
|
|
服务器守护进程 | mysqld | mongod |
客户端工具 | mysql | mongo |
逻辑备份工具 | mysqldump | mongodump |
逻辑还原工具 | mysql | mongorestore |
数据导出工具 | mysqldump | mongoexport |
数据导入工具 | source | mongoimport |
|
|
|
新建用户并授权 | grant all on *.* | db.addUser("user","psw") |
显示库列表 | show databases; | show dbs |
进去库 | use dbname; | use dbname |
显示表列表 | show tables; | show collections |
查询主从状态 | show slave status; | rs.status |
创建库 | create database name; | 无需单独创建,直接use进去 |
创建表 | create table tname(id int); | 无需单独创建,直接插入数据 |
删除表 | drop table tname; | db.tname.drop() |
删除库 | drop database dbname; | 首先进去该库,db.dropDatabase() |
|
|
|
插入记录 | insert into tname(id) value(2); | db.tname.insert({id:2}) |
删除记录 | delete from tname where id=2; | db.tname.remove({id:2}) |
修改/更新记录 | update tname set id=3 | db.tname.update({id:2}, |
|
|
|
查询所有记录 | select * from tname; | db.tname.find() |
查询所有列 | select id from tname; | db.tname.find({},{id:1}) |
条件查询 | select * from tname where id=2; | db.tname.find({id:2}) |
条件查询 | select * from tname where id < 2; | db.tname.find({id:{$lt:2}}) |
条件查询 | select * from tname where id >=2; | db.tname.find({id:{$gte:2}}) |
条件查询 | select * from tname where id=2 | db.tname.find({id:2, |
条件查询 | select * from tname where id=2 | db.tname.find($or:[{id:2}, |
条件查询 | select * from tname limit 1; | db.tname.findOne() |
|
|
|
模糊查询 | select * from tname where name | db.tname.find({name:/ste/}) |
模糊查询 | select * from tname where name | db.tname.find({name:/^ste/}) |
|
|
|
获取表记录数 | select count(id) from tname; | db.tname.count() |
获取有条件 | select count(id) from tname | db.tname.find({id:2}).count() |
查询时去掉 | select distinct(last_name) | db.tname.distinct('last_name') |
|
|
|
正排序查询 | select *from tname order by id; | db.tname.find().sort({id:1}) |
逆排序查询 | select *from tname | db.tname.find().sort({id:-1}) |
|
|
|
取存储路径 | explain select * from tname | db.tname.find({id=3}).explain() |
特别要注意的是:mongodb插入多个字段语法
> db.user.insert({id:1,name:'steve',sex:'male'}) 正确
> db.user.insert({id:2},{name:'bear'},{sex:'female'}) 错误
常规操作记录:
二:Find操作
日常开发中,我们玩查询,玩的最多的也就是二类:
①: >, >=, <, <=, !=, =。
②:And,OR,In,NotIn
这些操作在mongodb里面都封装好了,下面就一一介绍:
<1>"$gt", "$gte", "$lt", "$lte", "$ne", "没有特殊关键字",这些跟上面是一一对应的,举几个例子。
三,mongodb的部署技术
我们知道sql server能够做到读写分离,双机热备份和集群部署,当然mongodb也能做到,实际应用中我们不希望数据库采用单点部署,
如果碰到数据库宕机或者被毁灭性破坏那是多么的糟糕。
一:主从复制
1: 首先看看模型图
2: 从上面的图形中我们可以分析出这种架构有如下的好处:
<1> 数据备份。
<2> 数据恢复。
<3> 读写分离。
2:分片
mongodb采用将集合进行拆分,然后将拆分的数据均摊到几个片上的一种解决方案。
下面我对这张图解释一下:
人脸: 代表客户端,客户端肯定说,你数据库分片不分片跟我没关系,我叫你干啥就干啥,没什么好商量的。
mongos: 首先我们要了解”片键“的概念,也就是说拆分集合的依据是什么?按照什么键值进行拆分集合....
好了,mongos就是一个路由服务器,它会根据管理员设置的“片键”将数据分摊到自己管理的mongod集群,数据
和片的对应关系以及相应的配置信息保存在"config服务器"上。
mongod: 一个普通的数据库实例,如果不分片的话,我们会直接连上mongod。
四、mongodb实战
应用场景:在thinkphp中,以mysql数据库为主数据库,mongodb为辅数据库。
问题:如何提高百万级数据查询效率?