大数据应用

问题:上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

1.数据库索引

A:为什么要建索引?

答:索引可以提高数据的检索效率,也可以降低数据库的IO成本,并且索引还可以降低数据库的排序成本。排序分组操作主要消耗的就是CPU资源和内存,所以能够在排序分组操作中好好的利用索引将会极大地降低CPU资源的消耗。

B:什么情况下要建立索引?

B1:较频繁地作为查询条件的字段;

这个都知道。什么是教频繁呢?分析你执行的所有SQL语句。最好将他们一个个都列出来。然后分析,发现其中有些字段在大部分的SQL语句查询时候都会用到,那么就果断为他建立索引。

 

 

 

B2:唯一性太差的字段不适合建立索引;

什么是唯一性太差的字段。如状态字段、类型字段。那些只存储固定几个值的字段,例如用户登录状态、消息的status等。这个涉及到了索引扫描的特性。例如:通过索引查找键值为A和B的某些数据,通过A找到某条相符合的数据,这条数据在X页上面,然后继续扫描,又发现符合A的数据出现在了Y页上面,那么存储引擎就会丢弃X页面的数据,然后存储Y页面上的数据,一直到查找完所有对应A的数据,然后查找B字段,发现X页面上面又有对应B字段的数据,那么他就会再次扫描X页面,等于X页面就会被扫描2次甚至多次。以此类推,所以同一个数据页可能会被多次重复的读取,丢弃,在读取,这无疑给存储引擎极大地增加了IO的负担。

B3:更新太频繁地字段不适合创建索引;

当你为这个字段创建索引时候,当你再次更新这个字段数据时,数据库会自动更新他的索引,所以当这个字段更新太频繁地时候那么就是不断的更新索引,性能的影响可想而知。大概被检索几十次会更新一次的字段才比较符合建立索引的规范。而如果一个字段同一个时间段内被更新多次,那么果断不能为他建立索引。

B4:不会出现在where条件中的字段不该建立索引;为常作为查询条件的字段建立索引

如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。因此,为这样的字段建立索引,可以提高整个表的查询速度。

2.trie树+堆

Trie树的概念(百度的解释):字典树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。

3.

 

//可用思路:trie树+堆,数据库索引,划分子集分别统计hash分布式计算,近似统计,外排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值