本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照 a1/b1 a2/b2
的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。
输出格式:
分别在 4 行中按照 有理数1 运算符 有理数2 = 结果
的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式 k a/b
,其中 k
是整数部分,a/b
是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出 Inf
。题目保证正确的输出中没有超过整型范围的整数。
输入样例 1:
2/3 -4/2
输出样例 1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例 2:
5/3 0/6
输出样例 2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
有点烦需要计算的题目,还是化简分数的题目,有一些难受,因为需要大量的代码和运算。以前都是一弄弄一堆的代码,最后找BUG也不好找,所以我们需要一个清晰的解题步骤,就很简单。代码:
#include<iostream>
#include<bits/stdc++.h>
typedef long long ll;
const int manx=1005;
using namespace std;
char s[]={'+','-','*','/'};
ll gcdget(ll a,ll b)
{
return b==0?a:gcdget(b,a%b);
}
void printa(ll a,ll b)
{
//负负得正
if(b==0)
{
cout<<"Inf";
return ;
}
int sign=1;
if(a<0)
{
a=-a;
sign*=-1;
}
if(b<0)
{
b=-b;
sign*=-1;
}
ll gcd=gcdget(a,b);
if(sign==-1)
cout<<"(-";
a/=gcd;
b/=gcd;
if(b==1)
printf("%lld",a);
else if(a>b)
printf("%lld %lld/%lld",a/b,a%b,b);
else
printf("%lld/%lld",a,b);
if(sign==-1)
printf(")");
}
int main()
{
ll a,a1,b,b1;
scanf("%lld/%lld %lld/%lld",&a,&a1,&b,&b1);
for(int i=0;i<4;i++)
{
printa(a,a1);
cout<<' '<<s[i]<<' ';
printa(b,b1);
cout<<' '<<"="<<' ';
if(s[i]=='+')
printa(a*b1+b*a1,a1*b1);
else if(s[i]=='-')
printa(a*b1-b*a1,a1*b1);
else if(s[i]=='*')
printa(a*b,a1*b1);
else if(s[i]=='/')
printa(a*b1,a1*b);
cout<<endl;
}
return 0;
}