Pavel 喜欢网格迷宫。一个网格迷宫是一个 n × m 的长方形迷宫,其中每个单元格要么是空白的,要么是墙体。您可以从一个单元格走到另一个单元格,只要两个单元格均是空白的,且拥有一条公共的边。
Pavel 绘制了一个网格迷宫,包含的全部空白单元格形成了一个连通区域。换言之,您可以从任何一个空白的单元格,走到其它任意的空白单元格。Pavel 的迷宫如果墙体太少,他就不喜欢这个迷宫。他希望将 k 个空白的单元格转换为墙体,使得剩余的全部单元格仍然能够形成一个连通区域。请帮助他实现这个任务。
输入
第一行包含了三个整数 n, m, k (1 ≤ n, m ≤ 500, 0 ≤ k < s),其中 n 和 m 分别是迷宫的高度和宽度,k 是 Pavel 希望加入的墙体数目,并且字母 s 表示原始迷宫中的空白单元格数目。
接下来的 n 行中,每行包含 m 个字符。它们描述了原始的迷宫。如果某行中的一个字符等于 ".",则相应的单元格为空白;如果字符等于 "#",则单元格为墙体。
输出
打印 n 行,每行包含 m 个字符:符合 Pavel 需求的新迷宫。将已转换为墙体的原始空白单元格标识为 "X";其它单元格必须保留为未更改状态 (也就是 "." 和 "#")。
数据保证:存在一个解决方案。如果有多个解决方案,可输出它们中的任意一个。
示例
输入
3 4 2
#..#
..#.
#...
输出
#.X#
X.#.
#...
输入
5 4 5
#...
#.#.
.#..
...#
.#.#
输出
#XXX
#X#.
X#..
...#
.#.#
就是一个构造地图的DFS 题目,一开始就瞎写一通,逻辑也不是很对,最终也没有写出来,后来看了大神的代码,还是比较巧妙的,我们可以转化一下问题,正面想就是找出 一些点,使剩下的点可以走通(求一个联通分量,判断剩下的点是不是联通的 ),但是这样想就很难实现了,很麻烦,没有做出来。大神的代码是先走n-k(地图上点一共 n个,要放置k个墙)个点,将这个走过的路径都当做剩下联通点(肯定是联通的,因为是一步一步走过来的),剩下没有走过的点就是放置墙的点,巧妙的解法。这个题目还是有几点是值得学习的,我们在记录已经走过了几个点的时候,我们这时候有两个选择,来一个DFS形参或者一个全局变量,这里需要格外注意,如果我们选择形参的话,我们会出现错误,因为形参在DFS递归的时候会根据你当前的状态变化的,而全局变量是不会变的,所以我们在做DFS的时候,我们需要认清楚我们需要什么的参数。*****很重要的
#include<iostream>
using namespace std;
const int maxn=505;
int a[]={0,0,1,-1};
int b[]={1,-1,0,0};
char maap[maxn][maxn];
int vis[maxn][maxn];
bool flag2=false;
int n,m,k,num;
int kase;
void dfs(int x,int y)
{
kase++;
if(flag2)
return ;
if(kase>=num-k)
{
flag2=true;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(vis[i][j])
cout<<maap[i][j];
else if(maap[i][j]!='#')
cout<<'X';
else
cout<<'#';
}
cout<<endl;
}
return ;
}
for(int i=0;i<4;i++)
{
int xx=x+a[i];
int yy=y+b[i];
if(maap[xx][yy]=='.'&&xx>=0&&xx<n&&yy>=0&&yy<m&&vis[xx][yy]!=1)
{
vis[xx][yy]=1;
dfs(xx,yy);
}
}
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cin>>maap[i][j];
if(maap[i][j]=='.')
num++;
}
}
bool flag=false;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(maap[i][j]=='.')
{
vis[i][j]=1;
dfs(i,j);
break;
}
}
}
return 0;
}