一、查找官方文档
1.百度
https://pypi.org/project/jieba/
2.完整文档:https://github.com/fxsjy/jieba
二、介绍
1.简介
jieba(中文意思是“结巴”)中文文本切分:打造成最好的Python中文分词模块。
2.特点
- 支持四种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
- paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,
pip install paddlepaddle-tiny==1.6.1
。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade
。PaddlePaddle官网
- 支持繁体分词
- 支持自定义词典
- MIT 授权协议
三、主要功能
1.分词
1.1前三种分词模式案例
import jieba
string = '中华人民共和国是一个伟大的国家'
#精确模式
aa = jieba.lcut(string) # 等效于:jieba.lcut(string, cut_all=False)是否分割出所有情况=否
print(aa)
#全模式
aa = jieba.lcut(string, cut_all=True) # 是否分割出所有情况=是
print(aa)
#搜索引擎模式(在精确模式的基础上,对长词再次切分)
aa = jieba.lcut_for_search(string)
print(aa)
结果:
['中华人民共和国', '是', '一个', '伟大', '的', '国家']
['中华', '中华人民', '中华人民共和国', '华人', '人民', '人民共和国', '共和', '共和国', '国是', '一个', '伟大', '的', '国家']
['中华', '华人', '人民', '共和', '共和国', '中华人民共和国', '是', '一个', '伟大', '的', '国家']
1.2相似方法
原理:查看源码可知, lcut()是cut()放进list里返回的数据
2.添加自定义词典(提高分词准确率)
开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
2.1 一个精确模式案例
import jieba
string = '小明白参加云计算项目研究'
aa = jieba.lcut(string)
print(aa)
结果:
['小', '明白', '参加', '云', '计算', '项目', '研究']
发现:“小明白”这个人名分的不准确,“云计算”这个名词分的也不准确。
2.2 解决方案1:
使用 jieba.add_word(word)添加词库没有的词
import jieba
string = '小明白参加云计算项目研究'
jieba.add_word("云计算")
jieba.add_word("小明白")
aa = jieba.lcut(string)
print(aa)
结果:
['小明白', '参加', '云计算', '项目', '研究']
2.2 解决方案2(载入词典文件):
jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
先建一个XX.txt文件
import jieba
string = '小明白参加云计算项目研究'
jieba.load_userdict('dict.txt')
aa = jieba.lcut(string)
print(aa)
结果:
['小明白', '参加', '云计算', '项目', '研究']
3.关键词提取
import jieba.analyse
- jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
- sentence 为待提取的文本
- topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
- withWeight 为是否一并返回关键词权重值,默认值为 False
- allowPOS 仅包括指定词性的词,默认值为空,即不筛选
- jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
import jieba.analyse
string = '小明白参加云计算项目研究'
jieba.add_word("云计算")
jieba.add_word("小明白")
new_words = jieba.analyse.extract_tags(string, topK=3)
print(new_words)
结果:
['小明白', '云计算', '参加']