python lcut精确分词_Python jieba库分词模式实例用法

本文介绍了Python中jieba库的分词模式,包括全模式、精确模式和搜索引擎模式,并通过实例展示了如何使用jieba.cut(), jieba.lcut()和jieba.cut_for_search()方法。同时,还探讨了如何利用jieba库进行词性标注,提取动词和名词。" 80301045,5824854,Spark集群启动详解:从start-all.sh到心跳机制,"['Spark', '集群管理', '分布式计算']
摘要由CSDN通过智能技术生成

在中文分词中,jiebe库是最为常见的,主要的原因还是它独特的支持分词模式如:精确模式、全模式、搜索引擎模式。也对应着三种方式,包括jieba.cut()方法、jieba.lcut()方法、jieba.cut_for_search()方法。下面就为大家实例操作这些分词模式,以及方法的使用,一起来了解下吧。

全模式:

import jieba

seg_list = jieba.cut("南京市长江大桥欢迎你。", cut_all=True)

print(type(seg_list),seg_list)

精确模式:

seg_list1 = jieba.lcut("南京市长江大桥欢迎你。", cut_all=False)

print(type(seg_list1),seg_list1)

搜索模式:

seg_list2 = jieba.cut_for_search("南京市长江大桥欢迎你。")

print(type(seg_list2),seg_list2)

print("全模式:" + "/ ".join(seg_list))

print("精确模式:" + "/ ".join(seg_list1))

print("搜索引擎模式:" + "/ ".join(seg_list2))

输出结果:

全模式:南京/ 南京市/ 京市/ 市长/ 长江/ 长江大桥/ 大桥/ 欢迎/ 你/ 。

精确模式:南京市/ 长江大桥/ 欢迎/ 你/ 。

搜索引擎模式:南京/ 京市/ 南京市/ 长江/ 大桥/ 长江大桥/ 欢迎/ 你/ 。

内容扩展:

获取词性

我们还可以通过jiaba这个库把词性进行区分,比如动词,名词等

import jieba.posseg as psg

seg_list = psg.cut("我要进行关键词提取")

print([(s.word, s.flag) for s in seg_list])

# [('我', 'r'), ('要', 'v'), ('进行', 'v'), ('关键词', 'n'), ('提取', 'v')]

我们还可以提取动词或者名词,我们来提取下里面的动词

import jieba.posseg as psg

seg_list = psg.cut("我要进行关键词提取")

print([(s.word, s.flag) for s in seg_list if s.flag.startswith('v')])

到此这篇关于Python jieba库分词模式实例用法的文章就介绍到这了,更多相关Python jieba库分词模式怎么用内容请搜索WEB开发者以前的文章或继续浏览下面的相关文章希望大家以后多多支持WEB开发者!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值