Python 功率谱估计直接法

xn=10sin(2pi0.1+pi/3)+4sin(2pi0.4+pi/4),噪声为均值为零方差为一的高斯白噪声,用经典谱估计直接法来估计f1(0.1)和f2(0.4),并计算均方误差(MSE)。

原理

对N点DFT取绝对值后得到幅频特性,取绝对值平方后得到功率谱。
在估计f1、f2时,采取对幅频特性拟合后根据波峰处值最大来得到所要估计的f对应的k。
将整个程序循环多次即可计算估计值的期望和均方误差。
如何调整拟合效果见上篇博文。

结果

功率谱

期望与均方误差

代码

import matplotlib.pyplot as plt
import numpy as np
from math import *
import random as ran
#定义Wn
def WN(N,k,n):
    return complex(cos(-2*pi/N*k*n), sin(-2*pi/N*k*n))
#整个程序循环多次来计算MSE
f_1 = 0
f_2 = 0
Error_f1 = 0
Error_f2 = 0
MSE_f1 = 0
MSE_f2 = 0
times = 5
for time in range(0, int(times)):
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值