【配准】空间变换网络Spatial Transformer Networks原理分析

说明:此文只分析STN层的原理。 STN由三个部分组成: 1、定位网络 生成空间变换参数,如二维仿射变换参数:a11,a12,a21,a22,t1,t2。 可以是任意的回归网络,如卷积网络,全连接网络等 2、栅格生成器 由变换参数获取在输入特征图上面的采样位置。下面详细解释。 ...

2019-08-28 17:12:30

阅读数 47

评论数 0

【配准】2019医学图像配准中的深度学习综述论文解读(2)

承接上文。本文是双监督、弱监督、自监督部分的总结和个人感想,见解较为粗浅, 还请同行多多指教。 论文原文:Deep Learning in Medical Image Registration: A Survey ————————————————————————————————————————...

2019-07-30 13:22:50

阅读数 124

评论数 0

【配准】2019医学图像配准中的深度学习综述论文解读(1)

论文:Deep Learning in Medical Image Registration: A Survey 阅读中主要关注点:配准的各个流派大致的思路,比较有意思的想法,刚性配准的网络架构与目标函数 一、研究情况梗概 目前采用深度学习进行医学影像配准的方法大致可以分为三类: ...

2019-07-01 11:19:53

阅读数 342

评论数 0

【配准】图像配准工具包汇总

1、SimpleITK 一个开源的用于分割和配准的工具库,支持JAVA、python等语言。配置有点麻烦,算法都是基于灰度的。 2、ANTs 依赖于ITK。常用于分割和配准。本人没用过。 3、3D slicer ...

2019-06-17 10:34:14

阅读数 131

评论数 0

【Pytorch实战6】一个完整的分类案例:迁移学习分类蚂蚁和蜜蜂(Res18,VGG16)

参考资料: 《深度学习之pytorch实战计算机视觉》 Pytorch官方教程 Pytorch官方文档 本文是采用pytorch进行迁移学习的实战演练,实战目的是为了进一步学习和熟悉pytorch编程。 本文涉及以下内容 迁移学习的概念 数据集的介绍,读取,处理和预览 模型搭建...

2019-05-16 06:49:34

阅读数 211

评论数 0

【Pytorch实战5】数据读取和处理(以脸部关键点检测的数据为例)

参考资料: 数据读取和处理官网教程 对于初学者来说,编程遇到的头一个问题可能就是不知道怎么编写数据读取的代码以输入网络。本文主要讲解的就是编写该部分代码的常见方法和编程思路。内容基本是官方文档的翻译与总结。 数据 下载链接 下载之后保存在data/faces路径下。 里面一共有69...

2019-05-16 00:30:01

阅读数 254

评论数 0

【Pytorch实战4】基于CIFAR10数据集训练一个分类器

参考资料: 《深度学习之pytorch实战计算机视觉》 Pytorch官方教程 Pytorch中文文档 先是数据的导入与预览。 import torch import torchvision from torchvision import datasets, transforms...

2019-05-16 00:29:06

阅读数 109

评论数 0

【pytorch实战3】模型搭建和参数优化

参考资料: 《深度学习之pytorch实战计算机视觉》 Pytorch官方教程 Pytorch中文文档 一个典型的神经网络训练过程如下: 定义神经网络 在训练数据集上面迭代,输入数据到神经网络 前向传播计算loss 反向传播计算梯度 参数更新。 下面来看如何基于pytorch...

2019-05-16 00:27:48

阅读数 57

评论数 0

【pytorch实战2】自动求导机制

参考资料: 《深度学习之pytorch实战计算机视觉》 Pytorch官方教程 Pytorch中文文档 先看一个只有一层的简单的神经网络训练代码。 #--coding:utf-8-- ''' 一个简单的神经网络模型 ''' import torch batch_n = 100#ba...

2019-05-16 00:27:32

阅读数 25

评论数 0

【Pytorch实战1】Pytorch中的Tensor

参考资料: 《深度学习之pytorch实战计算机视觉》 Pytorch官方教程 Pytorch中文文档 Tensor在Pytorch中负责存储基本数据,用于替代numpy。tensor数据类型的变量可以在GPUs上进行运算。 一、Tensor的生成 用于Tensor生成的常用函...

2019-05-16 00:26:41

阅读数 26

评论数 0

【配准】用opencv对眼底彩照进行仿射配准

常见的眼底彩照的配准方法是基于特征点的,比如SIFT角点。操作起来比较麻烦,为了制作金标准,我选择手动配准,因为我的数据只是存在偏移,旋转等刚性变换,所以我采用的具体的方法是肉眼观察选择3对分散均匀,具有明显特征的分叉点。用opencv来计算这三对点所决定的仿射矩阵,然后再根据得到的仿射矩阵对浮动...

2019-04-09 23:01:12

阅读数 62

评论数 0

【Keras+配准】用深度学习做配准之训练数据(二维图像对)的准备和读取

前段时间在用VoxelMorph框架做二维图像的配准,在数据准备和读取一块花了不少的时间,也有一些同学问我这一块的代码该怎么写,所以这里我把自己的核心代码分享一下,以供参考。 关于VoxelMorph的源代码请参考https://github.com/voxelmorph/voxelmorph...

2019-04-09 22:39:59

阅读数 489

评论数 12

【配准】配准效果可视化:用opencv(python)显示配准后图像与固定图像的叠加效果

说明:代码中的register是自己写的配准函数,我是用深度学习做的,代码很长,不能公开,大家用自己的配准方法就好。 在进行图像配准的时候如何评价配准效果是一个很头疼的问题。对于微小的形变,仅用肉眼观察配准前后的图像很难判断配准效果。一种常见的评价方法是将配准后的图像与固定图像重叠在一起,...

2019-04-09 22:05:53

阅读数 480

评论数 7

simpleElastix安装(Ubuntu16.04,Anaconda3,python3.5)

参考:官方文档 simpleElastix是常用的配准软件库,虽然功能很强大,但是安装真心麻烦。我在Ubuntu 16.04系统和Windows7系统上同步安装,花了整整两天时间才在Ubuntu上面安装成功。 电脑配置: Ubuntu16.04系统,16G RAM,Anacon...

2019-03-12 16:25:26

阅读数 296

评论数 0

用Burg法估计AR模型并绘制功率谱曲线的python实现

这是这学期《随机信号处理》课程的作业,程序调试了蛮久的,在此记录一下。 原理 这个博文写得很清楚,这里我就跳过了。 需要说明的是我的代码中反射系数与这篇博文中的反射系数相差一个负号,因为我们老师是这么讲的,虽然我看的经典教材上都同这篇博文中的表述。 Burg法求解AR(p)模型参数及MAT...

2019-01-23 23:05:18

阅读数 499

评论数 0

【论文阅读笔记6】序列模型入门之LSTM和GRU

本文只是吴恩达视频课程关于序列模型一节的笔记。 参考资料: 吴恩达深度学习工程师微专业之序列模型 博文——理解LSTM 吴恩达本来就是根据这篇博文的内容来讲的,所以 个人认为 认真学习过吴恩达讲的那个课程后可以不用再看那篇博文了,能获得的新的知识不多,另外网上的博文基本也都是根据那篇博文写...

2018-11-06 21:16:31

阅读数 67

评论数 0

完美解决Sublime无法输入中文问题

https://blog.csdn.net/CV_YOU/article/details/77702383#commentsedit 第一条指定非必要,方便快捷,亲测可用。 必须用subl指令打开sublime。

2018-10-25 22:20:19

阅读数 37

评论数 0

【论文阅读笔记5】反卷积和膨胀卷积

参考: A guide to convolution arithmetic for deep learning            如何理解深度学习中的deconvolution networks? 要点: 卷积运算实际上是一种矩阵的乘法运算。反卷积相当于卷积在神经网络结构的正向和反向传播...

2018-10-18 11:19:41

阅读数 430

评论数 0

【论文阅读笔记4】FCN论文详解(第一篇语义分割论文阅读)

论文:Fully Convolutional Networks for Semantic Segmentation   一、语义分割       这部分主要参考:FCN        图像语义分割的意思就是机器自动分割并识别出图像中的内容,比如给出一个人骑摩托车的照片,机器判断后应当能够生...

2018-10-16 22:55:17

阅读数 296

评论数 0

【论文阅读笔记3】DenseNet和分类网络汇总

 可参考:DenseNet 简介  论文:Densely Connected Convolutional Networks 一、介绍        这篇论文是CVPR2017 的best paper,主要探讨了如何改进网络结构提升网络性能的方法,提出了dense block,密集连接的概念。...

2018-10-16 20:48:42

阅读数 296

评论数 0

提示
确定要删除当前文章?
取消 删除