本文涉及到大数据领域的通识知识,建议每一位对大数据感兴趣的同学认真阅读、认真阅读、认真阅读。
前言
数据分析是现代企业和组织决策过程中不可或缺的一部分,数据分析技术经过数十年的发展,需求场景从 BI 报表到数据探寻、实时预测、用户画像等不断丰富,技术架构经历从数据仓库、数据湖、到数据湖仓的演进,并走向数据湖仓一体架构,通过一套架构服务多样化的分析场景。
数据仓库
数据仓库的发展可以追溯到 1980 年,关系型数据库、日志文件等数据源的数据经过 ETL 处理,统一存储到数据仓库,用于服务 BI 报表、数据挖掘等分析场景。数据仓库在数据质量、事务处理、查询性能、数据治理等方面有明显的优势,但随着数据分析的需求越来越大,数据仓库的方案也面临一些挑战。
- 数据多样化
除了结构化的数据,半结构化、非结构化的数据越来越多。
- 数据孤岛问题
数据仓库面向主题管理,导致数据分散形成孤岛,难以形成全局统一的数据分析。
- 成本与扩展性
大数据量增长带来数据存储成本与横向扩展的问题。
- 高级数据分析支持
数据仓库能很好的支持 BI 相关应用,但随着 AI 的发展,AI 应用与数据仓库的数据交互效率不高,制约了 AI 应用的发展。