你真的了解数据仓库、数据湖、数据湖仓吗?五分钟带你了解数据湖仓的演变

本文涉及到大数据领域的通识知识,建议每一位对大数据感兴趣的同学认真阅读、认真阅读、认真阅读。

前言

数据分析是现代企业和组织决策过程中不可或缺的一部分,数据分析技术经过数十年的发展,需求场景从 BI 报表到数据探寻、实时预测、用户画像等不断丰富,技术架构经历从数据仓库数据湖、到数据湖仓的演进,并走向数据湖仓一体架构,通过一套架构服务多样化的分析场景。

数据仓库

数据仓库的发展可以追溯到 1980 年,关系型数据库、日志文件等数据源的数据经过 ETL 处理,统一存储到数据仓库,用于服务 BI 报表、数据挖掘等分析场景。数据仓库在数据质量、事务处理、查询性能、数据治理等方面有明显的优势,但随着数据分析的需求越来越大,数据仓库的方案也面临一些挑战。

  • 数据多样化

除了结构化的数据,半结构化、非结构化的数据越来越多。

  • 数据孤岛问题

数据仓库面向主题管理,导致数据分散形成孤岛,难以形成全局统一的数据分析。

  • 成本与扩展性

大数据量增长带来数据存储成本与横向扩展的问题。

  • 高级数据分析支持

数据仓库能很好的支持 BI 相关应用,但随着 AI 的发展,AI 应用与数据仓库的数据交互效率不高,制约了 AI 应用的发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值