复杂度分析:浅析最好、最坏、平均、均摊时间复杂度

1. 有人说,我们项目之前都会进行性能测试,再做代码的时间复杂度、空间复杂度分析,是不是多此一举呢?而且,每段代码都分析一下时间复杂度、空间复杂度,是不是很浪费时间呢?你怎么看待这个问题呢?

不是多此一举,性能测试受

a.运行环境影响:不同的运行环境可能会有截然不同的测试结果

b.数据规模影响:拿排序举例。同一个排序算法,数据有序度不一样,排序的执行时间差别很大。不同排序算法,在不同数据规模下,排序速度也不同

所以需要依赖一种不需要具体测试数据,就能估算执行效率的方法

简单的代码,时间空间复杂度一眼就能看出来

对于复杂代码,需要通过分析时间,空间复杂度,尽可能防止非确定量级。以避免后续数据规模增大时,导致执行效率极低

2. 课后思考:分析一下下面这个add()函数的时间复杂度。

// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   if (i >= len) { // 数组空间不够了
     // 重新申请一个2倍大小的数组空间
     int new_array[] = new int[len*2];
     // 把原来array数组中的数据依次copy到new_array
     for (int j = 0; j < len; ++j) {
       new_array[j] = array[j];
     }
     // new_array复制给array,array现在大小就是2倍len了
     array = new_array;
     len = 2 * len;
   }
   // 将element放到下标为i的位置,下标i加一
   array[i] = element;
   ++i;
}

初始len=10,扩张x次后,len=n,扩张次数 x=log2(n/10)

扩张次数 x = \log_2(\frac{n}{10})

最好时间复杂度:O(1)

最坏时间复杂度:O(n)

平均时间复杂度:O(1) 

\frac{9\cdot1}{n}+\frac{10}{n}+\frac{(19-10)\cdot1}{n}+\frac{20}{n}+\frac{(39-20)\cdot1}{n}+\frac{40}{n}+\cdots+\frac{10\cdot(2^x-2^{x-1}-1)\cdot1}{n}+\frac{10\cdot2^x}{n}

=\frac{10\cdot(2^0+2^1+\cdots+2^x)}{n}+\frac{10\cdot2^x-x}{n}

只关注循环次数最多的一段代码

=\frac{10\cdot(2^{x+1}-1)}{n}

=\frac{2n-10}{n}

均摊时间复杂度:O(1)

10(2^x-2^{x-1}-1)=\frac{n}{2}-10次1,1次n,均摊后O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值