1. 有人说,我们项目之前都会进行性能测试,再做代码的时间复杂度、空间复杂度分析,是不是多此一举呢?而且,每段代码都分析一下时间复杂度、空间复杂度,是不是很浪费时间呢?你怎么看待这个问题呢?
不是多此一举,性能测试受
a.运行环境影响:不同的运行环境可能会有截然不同的测试结果
b.数据规模影响:拿排序举例。同一个排序算法,数据有序度不一样,排序的执行时间差别很大。不同排序算法,在不同数据规模下,排序速度也不同
所以需要依赖一种不需要具体测试数据,就能估算执行效率的方法
简单的代码,时间空间复杂度一眼就能看出来
对于复杂代码,需要通过分析时间,空间复杂度,尽可能防止非确定量级。以避免后续数据规模增大时,导致执行效率极低
2. 课后思考:分析一下下面这个add()函数的时间复杂度。
// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10];
int len = 10;
int i = 0;
// 往数组中添加一个元素
void add(int element) {
if (i >= len) { // 数组空间不够了
// 重新申请一个2倍大小的数组空间
int new_array[] = new int[len*2];
// 把原来array数组中的数据依次copy到new_array
for (int j = 0; j < len; ++j) {
new_array[j] = array[j];
}
// new_array复制给array,array现在大小就是2倍len了
array = new_array;
len = 2 * len;
}
// 将element放到下标为i的位置,下标i加一
array[i] = element;
++i;
}
初始len=10,扩张x次后,len=n,扩张次数 x=log2(n/10)
扩张次数
最好时间复杂度:O(1)
最坏时间复杂度:O(n)
平均时间复杂度:O(1)
只关注循环次数最多的一段代码
均摊时间复杂度:O(1)
次1,1次n,均摊后O(1)