虽然很水但窝还是要发!
题目描述
有一条横贯东西的大河,河有笔直的南北两岸,岸上各有位置各不相同的N个城市。北岸的每个城市有且仅有一个友好城市在南岸,而且不同城市的友好城市不相同。每对友好城市都向政府申请在河上开辟一条直线航道连接两个城市,但是由于河上雾太大,政府决定避免任意两条航道交叉,以避免事故。编程帮助政府做出一些批准和拒绝申请的决定,使得在保证任意两条航道不相交的情况下,被批准的申请尽量多。
输入输出格式
输入格式:
第1行,一个整数N,表示城市数。
第2行到第n+1行,每行两个整数,中间用一个空格隔开,分别表示南岸和北岸的一对友好城市的坐标。
输出格式:
仅一行,输出一个整数,表示政府所能批准的最多申请数。
输入输出样例
输入样例#1: 复制
7
22 4
2 6
10 3
15 12
9 8
17 17
4 2
输出样例#1: 复制
4
说明
50% 1<=N<=5000,0<=xi<=10000
100% 1<=N<=2e5,0<=xi<=1e6
看一下数据很容易发现让两个桥不相交的最简单条件就是a.w<b.w且a.s<b.s,所以在按其中任意一边从小到大排序完后算另一边的最长上升子序列就ok了
#include <iostream>
#include <algorithm>
#include <limits.h>
using namespace std;
struct st{
int a,b;
}s[1000100];
int dp[1000100]={0};
bool cmp(st A,st B){
if(A.a==B.a) return A.b<B.b;
else return A.a<B.a;
}
int main()
{
int n,i;
cin>>n;
for(i=0;i<n;i++){
cin>>s[i].a>>s[i].b;
}
int sum=0;
sort(s,s+n,cmp);
dp[0]=-INT_MAX;
for(i=0;i<n;i++){
if(dp[sum]<s[i].b){
sum++;
dp[sum]=s[i].b;
}else{
int *p=lower_bound(dp+1,dp+sum,s[i].b);
int g=p-dp;
dp[g]=s[i].b;
}
}
cout<<sum<<endl;
return 0;
}