蓝桥杯 历届试题 小数第n位

该博客探讨了如何利用快速幂算法解决整数除法中获取特定位置小数部分的问题。通过将问题转化为计算10的n+2次方对b取模,然后进行高效乘法模运算,可以快速求得指定位置的三位数字。示例代码展示了如何实现这一过程。
摘要由CSDN通过智能技术生成

同个人网站 https://www.serendipper-x.cn/,欢迎访问 !

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述
  我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
  如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。

本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
  
输入格式
  一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
  
输出格式
  一行3位数字,表示:a除以b,小数后第n位开始的3位数字。

样例输入
1 8 1
样例输出
125

样例输入
1 8 3
样例输出
500

样例输入
282866 999000 6
样例输出
914

思路:
问题可转化为 a / b * 10n+2 % 1000

需要用下面的公式:

x/d%m = x%(d*m)/d

在求解10n+2时,用快速幂求解即可

def qpower(a, b, mod):
    base = a
    ans = 1
    while b:
        if b&1:
            ans = ((ans%mod)*(base%mod))%mod
        base = (base%mod)*(base%mod)
        b >>= 1
    return ans

a, b, n = list(map(int, input().split()))
mod = b*1000
c = qpower(10, n+2, mod)
res = (a%mod*c%mod)%mod
print(res//b)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值