"ODS" 是 "Operational Data Store" 的缩写,翻译为中文是 "运营数据存储"。在数据湖(Data Lake)的架构中,ODS 是一个重要的组成部分。
数据湖(Data Lake)简介
数据湖是一个存储大量原始和结构化数据的系统或存储库,数据以其原始格式存储,而不需要预定义的数据结构。数据湖允许存储所有类型的数据,包括结构化数据(如关系数据库中的表)、半结构化数据(如日志文件或XML数据)和非结构化数据(如文本文件或图像文件)。数据湖的目标是提供一个灵活的数据存储解决方案,以便于数据分析、数据挖掘和机器学习等应用的进行。
ODS(Operational Data Store)
在数据湖中,ODS 是数据湖体系结构中的一个部分,通常用于存储经过初步处理和清洗的、与业务操作直接相关的数据。ODS 作为数据湖中的一层,其主要功能是提供一个统一、一致且可靠的数据集合,以支持业务应用程序的操作性需求。具体来说,ODS 可以包含来自不同业务系统的数据,经过轻量级的转换和清洗后,用于支持实时分析、报告和业务决策等操作。
ODS 的特点和作用:
- 数据清洗和转换:ODS 存储的数据经过初步的清洗和转换,以确保数据的一致性和准确性。
- 支持实时操作:ODS 中的数据通常与业务操作紧密相关,可以支持实时的数据查询和分析需求。
- 数据的业务集成:ODS 可以整合来自多个业务系统的数据,为业务应用程序提供统一的数据源。
- 作为数据湖的一部分:在数据湖中,ODS 是一个重要的组成部分,帮助管理和优化数据的流动和使用。
总之,ODS 在数据湖中扮演着关键角色,为业务应用程序提供了高质量、经过初步加工的操作性数据,支持各种实时和批处理的数据分析和决策需求。