如何在LangChain中实现Hybrid Search:结合向量相似和全文检索的强大搜索

引言

搜索是现代应用程序中至关重要的一部分。在LangChain中,我们通常依赖向量相似度进行检索。然而,通过结合其他技术(如全文检索、BM25等)可以显著提升搜索的准确性和灵活性,这种综合技术被称为"Hybrid Search"。本文将介绍如何在LangChain中实现Hybrid Search,特别是在使用Astra DB等支持该功能的vectorstore时。

主要内容

Step 1: 验证你的vectorstore支持Hybrid Search

在LangChain中实现Hybrid Search的第一步是确保你使用的vectorstore支持该功能。由于LangChain尚未提供统一的Hybrid Search接口,每个vectorstore可能有自己的实现方式。通常,可以通过检查相关文档或源代码来确定其支持方式。

Step 2: 将Hybrid Search参数作为可配置字段

为了灵活使用Hybrid Search参数,你需要在调用链(chain)中将其设为可配置字段。这样可以在运行时轻松设置和调整相关参数。

Step 3: 调用配置字段的链

一旦设置了可配置字段,就可以在运行时通过配置选项调用该链,实现个性化的Hybrid Search。

代码示例

以下是如何在Astra DB中实现Hybrid Search的具体代码示例:

# 安装必要的软件包
!pip install "cassio>=0.1.7"

# 初始化cassio
import cassio

cassio.init(
    database_id="Your database ID",
    token="Your application token",
    keyspace="Your key space",
)

# 创建Cassandra VectorStore
from cassio.table.cql import STANDARD_ANALYZER
from langchain_community.vectorstores import Cassandra
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
vectorstore = Cassandra(
    embedding=embeddings,
    table_name="test_hybrid",
    body_index_options=[STANDARD_ANALYZER],
    session=None,
    keyspace=None,
)

# 添加文本数据到vectorstore
vectorstore.add_texts(
    [
        "In 2023, I visited Paris",
        "In 2022, I visited New York",
        "In 2021, I visited New Orleans",
    ]
)

# 标准相似度搜索
vectorstore.as_retriever().invoke("What city did I visit last?")

# 使用Astra DB的body_search参数进行Hybrid Search
vectorstore.as_retriever(search_kwargs={"body_search": "new"}).invoke(
    "What city did I visit last?"
)

# 创建用于问答的链
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import (
    ConfigurableField,
    RunnablePassthrough,
)
from langchain_openai import ChatOpenAI

# 设定问答模板
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retriever = vectorstore.as_retriever()

# 标记retriever为可配置字段
configurable_retriever = retriever.configurable_fields(
    search_kwargs=ConfigurableField(
        id="search_kwargs",
        name="Search Kwargs",
        description="The search kwargs to use",
    )
)

# 创建配置链
chain = (
    {"context": configurable_retriever, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

# 通过可配置选项调用链
chain.invoke(
    "What city did I visit last?",
    config={"configurable": {"search_kwargs": {"body_search": "new"}}},
)

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问稳定性。

  2. 配置错误:确保在调用链时,正确设置了搜索参数,特别是使用自定义搜索条件时。

总结与进一步学习资源

通过本文,你已经了解了如何使用LangChain实现Hybrid Search的基本步骤和示例代码。建议进一步阅读以下资源来深化你的理解:

参考资料

  • LangChain Documentation
  • Astra DB Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值