RAG_Agent
文章平均质量分 91
本专栏深入探讨大模型领域的两大应用场景:RAG和Agent。RAG是用于问答和生成型任务的模型框架。LLM Agent则是基于语言的多模态智能代理,运用自然语言处理和机器学习技术与用户交互,提供个性化服务。我们将重点介绍RAG和Agent的理论、实践技巧以及最新代码实现和框架部署。
一个处女座的程序猿
人工智能硕博学历,拥有十多项发明专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN社区/51CTO/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万。正在撰写《AI算法最新实战》一书,目前已30万字
展开
-
LLMs之Claude 3.5:Claude 3.5(Claude 3.5 Sonnet和Claude 3.5 Haiku)的简介、安装和使用方法、案例应用之详细攻略
LLMs之Claude 3.5:Claude 3.5(Claude 3.5 Sonnet和Claude 3.5 Haiku)的简介、安装和使用方法、案例应用之详细攻略目录Claude 3.5的简介Claude 3.5的安装和使用方法Claude 3.5的案例应用Claude 3.5的简介Anthropic于2024年10月22日发布了Claude 3.5的两个新模型:Claude 3.5 Sonnet和Claude 3.5 Haiku,以及一项突破性的新功能——计算机使原创 2024-10-24 00:02:20 · 1013 阅读 · 0 评论 -
LLMs之RAG:《RAFT: Adapting Language Model to Domain Specific RAG》翻译与解读
LLMs之RAG:《RAFT: Adapting Language Model to Domain Specific RAG》翻译与解读目录《RAFT: Adapting Language Model to Domain Specific RAG》翻译与解读Abstract1 Introduction7、Conclusion《RAFT: Adapting Language Model to Domain Specific RAG》翻译与解原创 2024-10-23 23:59:24 · 1096 阅读 · 0 评论 -
LLMs之EmbeddingModel/reRanker:gte-multilingual-base的简介、安装和使用方法、案例应用之详细攻略
LLMs之EmbeddingModel/reRanker:gte-multilingual-base的简介、安装和使用方法、案例应用之详细攻略目录相关文章gte-multilingual-base的简介gte-multilingual-base的安装和使用方法gte-multilingual-base的案例应用相关文章《mGTE: Generalized Long-Context Text Represe原创 2024-08-07 00:06:20 · 845 阅读 · 0 评论 -
LLMs之RAG:MemoRAG(利用其记忆模型来实现对整个数据库的全局理解)的简介、安装和使用方法、案例应用之详细攻略
LLMs之RAG:MemoRAG(利用其记忆模型来实现对整个数据库的全局理解)的简介、安装和使用方法、案例应用之详细攻略目录MemoRAG的简介MemoRAG的安装和使用方法MemoRAG的案例应用MemoRAG的简介MemoRAG:通过记忆启发的知识发现迈向下一代RAG为RAG赋予基于记忆的数据接口,适用于各种用途的应用!MemoRAG是一个建立在高效、超长记忆模型之上的创新RAG框架。与主要处理具有明确信息需求查询的标准RAG不同原创 2024-09-26 01:30:20 · 1654 阅读 · 0 评论 -
LLMs之RAG:MaxKB的简介、安装和使用方法、案例应用之详细攻略
LLMs之RAG:MaxKB的简介、安装和使用方法、案例应用之详细攻略目录MaxKB的简介MaxKB的安装和使用方法MaxKB的案例应用MaxKB的简介MaxKB是一款基于大语言模型和 RAG 的知识库问答系统。开箱即用、模型中立、灵活编排,支持快速嵌入到第三方业务系统。MaxKB = Max Knowledge Base,是一款基于大语言模型和 RAG 的开源知识库问答系统,广泛应用于企业内部知识库、客户服务、学术研究与教育等场景。开箱即用:支持直接上原创 2024-06-18 01:17:43 · 795 阅读 · 0 评论 -
LLMs:awesome-LLM-resourses项目(比较好的LLM资料总结—数据/微调/推理/评估/体验/RAG/Agent/搜索/书籍/课程/教程/论文和技巧)的简介、分类、使用方法之详细攻略
LLMs:awesome-LLM-resourses项目(比较好的LLM资料总结—数据/微调/推理/评估/体验/RAG/Agent/搜索/书籍/课程/教程/论文和技巧)的简介、分类、使用方法之详细攻略目录awesome-LLM-resourses项目的简介awesome-LLM-resourses项目的分类awesome-LLM-resourses项目的使用方法awesome-LLM-resourses项目的简介2024年9月,该GitHub项目名为原创 2024-09-12 00:53:58 · 1288 阅读 · 0 评论 -
LLMs之SQL:《Text2SQL is Not Enough: Unifying AI and Databases with TAG》翻译与解读
LLMs之SQL:《Text2SQL is Not Enough: Unifying AI and Databases with TAG》翻译与解读目录《Text2SQL is Not Enough: Unifying AI and Databases with TAG》翻译与解读Abstract1 Introduction4 EVALUATION6 CONCLUSION《Text2SQL is Not Enough: Uni原创 2024-08-30 01:47:48 · 1524 阅读 · 0 评论 -
LLMs之OCR:llm_aided_ocr(基于LLM辅助的OCR项目)的简介、安装和使用方法、案例应用之详细攻略
LLMs之OCR:llm_aided_ocr(基于LLM辅助的OCR项目)的简介、安装和使用方法、案例应用之详细攻略目录llm_aided_ocr的简介llm_aided_ocr的安装和使用方法llm_aided_ocr的案例应用llm_aided_ocr的简介2024年8月,LLM辅助OCR项目是一个先进的系统,旨在显著提高光学字符识别(OCR)输出的质量。通过利用尖端的自然语言处理技术和大型语言模型(LLM原创 2024-09-21 23:46:07 · 1701 阅读 · 0 评论 -
LLMs之PaperQA2:PaperQA2的简介、安装和使用方法、案例应用之详细攻略
LLMs之PaperQA2:PaperQA2的简介、安装和使用方法、案例应用之详细攻略目录PaperQA2的简介PaperQA2的安装和使用方法PaperQA2的案例应用PaperQA2的简介PaperQA2是一个高精度的检索增强生成(RAG)工具,专注于处理科学文献。它通过整合文档元数据、嵌入和大型语言模型(LLM)来提供基于文本的引文答案。PaperQA2旨在超越人类在科学任务中的表现,如问答、总结和矛盾检测原创 2024-09-21 23:45:35 · 1646 阅读 · 0 评论 -
LLMs之LCM:《CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving》翻译与解读
LLMs之LCM:《CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving》翻译与解读目录《CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving》翻译与解读Abstract1 Introduction9 Discussion an原创 2024-09-22 17:08:56 · 1483 阅读 · 0 评论 -
LLMs之CoT:人类与大语言模型中思维链推理的探究—《Why think step by step? Reasoning emerges from the locality of experienc
IDC确定了“数据到洞察”管道中的四个核心阶段:识别数据、收集数据、转换数据和分析数据。这些阶段也是DataOps的核心要素。是AI 时代的数据管理,为数据带来了相同的敏捷性原则,数据现已成为最具战略意义的资产,被称为新的源代码。DataOps需要高性能和可扩展的数据库,可以处理混合工作负载、不同数据类型如来自传感器的音频、视频、文本和数据等,以及保持计算层充分利用所需的性能能力。DataOps将DevOps团队与数据工程师、数据科学家等结合在一起,提供一些工具、流程和组织结构,服务于以数据为中心的企业。原创 2023-12-24 02:03:18 · 1119 阅读 · 0 评论 -
LLMs之LCM:《MemLong: Memory-Augmented Retrieval for Long Text Modeling》翻译与解读
LLMs之LCM:《MemLong: Memory-Augmented Retrieval for Long Text Modeling》翻译与解读目录《MemLong: Memory-Augmented Retrieval for Long Text Modeling》翻译与解读Abstract1 Introduction7 Conclusion《MemLong: Memory-Augmented Retrieval for L原创 2024-09-21 23:42:15 · 1396 阅读 · 0 评论 -
LLMs之RAG之RAGChecker:RAGChecker(一个用于诊断RAG的细粒度框架)的简介、安装和使用方法、案例应用之详细攻略
LLMs之RAG之RAGChecker:RAGChecker(一个用于诊断RAG的细粒度框架)的简介、安装和使用方法、案例应用之详细攻略目录相关论文RAGChecker的简介RAGChecker的安装和使用方法RAGChecker的案例应用相关论文《RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation》翻译与解读地址论文地址:https:/原创 2024-08-28 02:11:18 · 1150 阅读 · 0 评论 -
LLMs之Agent之AgentK:AgentK的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent之AgentK:AgentK的简介、安装和使用方法、案例应用之详细攻略目录AgentK的简介AgentK的安装和使用方法AgentK的案例应用AgentK的简介自我代理的 AGI。AgentK 是一个由多个代理(Agent)组成的自我进化的 AGI,这些代理协作并根据需要创建新的代理,以完成用户的任务。>> Agent K 是一个模块化的、自我进化的 AGI 系统,它会在你挑战它完成任务时逐渐构建自己的思维。>> "K" 代表核心,意思是小型核心原创 2024-08-13 23:43:49 · 1419 阅读 · 0 评论 -
LLM之Agent:Deaddit(一个具有AI用户且类似 Reddit 的网站)的简介、安装和使用方法、案例应用之详细攻略
LLM之Agent:Deaddit(一个具有AI用户且类似 Reddit 的网站)的简介、安装和使用方法、案例应用之详细攻略目录Deaddit的简介Deaddit的安装和使用方法Deaddit的案例应用Deaddit的简介欢迎来到 Deaddit,这是一个展示 AI 充斥的互联网可能会是什么样子的技术演示。所有帖子、评论和用户资料均由 AI 生成。GitHub地址:GitHub - CubicalBatch/deaddit: If Reddit's原创 2024-08-07 23:25:54 · 1057 阅读 · 0 评论 -
MLM之GPT-4o:在GPT-4o的806版本的 API 中引入结构化输出—可以可靠地遵循开发人员提供的 JSON 模式
MLM之GPT-4o:在GPT-4o的806版本的 API 中引入结构化输出—可以可靠地遵循开发人员提供的 JSON 模式目录在 API 中引入了“结构化输出”功能其他使用场景底层机制限制和注意事项在 API 中引入了“结构化输出”功能去年在 DevDay 上,我们推出了 JSON 模式,这为希望使用我们模型构建可靠应用程序的开发者提供了一个有用的构建模块。尽管 JSON 模式提高了生成有效 JSON 输出的模型可靠性,但原创 2024-08-11 23:03:52 · 1204 阅读 · 0 评论 -
LLMs之Agent:Twitter Personality的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Twitter Personality的简介、安装和使用方法、案例应用之详细攻略目录Twitter Personality的简介Twitter Personality的安装和使用方法Twitter Personality的案例应用Twitter Personality的简介Twitter Personality 是一个 web 应用程序,通过分析你的 Twitter 账号,使用 Wordware AI Agent 创建个性化的人格档案。该项目利用最先进的 A原创 2024-08-11 22:10:21 · 1368 阅读 · 0 评论 -
LLMs之memory:mem0(个性化的AI记忆层)的简介、安装和使用方法、案例应用之详细攻略
LLMs之memory:mem0(个性化的AI记忆层)的简介、安装和使用方法、案例应用之详细攻略目录mem0的简介mem0的安装和使用方法mem0的案例应用mem0的简介2024年7月19日,Mem0 AI公司公开发布mem0,这是一款个性化 AI 的记忆层。Mem0 为大语言模型提供了一个智能、自我改进的记忆层,使得在各种应用中实现个性化的 AI 体验成为可能,从而实现跨应用程序的个性化 AI 体验。注意:Mem0 仓库现在还包含了 Embedchain 项目。我们原创 2024-07-23 23:47:20 · 2168 阅读 · 0 评论 -
LLMs之Agent:Agentscope的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Agentscope的简介、安装和使用方法、案例应用之详细攻略目录Agentscope的简介Agentscope的安装和使用方法Agentscope的案例应用Agentscope的简介2024年2月27日,发布Agentscope,这是一款更简单地构建基于LLM的多智能体应用。AgentScope是一个创新的多智能体开发平台,旨在赋予开发人员使用大模型轻松构建多智能体应用的能力。>> 高易用: AgentScope专为开发原创 2024-07-25 00:28:53 · 1557 阅读 · 0 评论 -
LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略
LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略目录相关文章Llama 3.1的简介Llama 3.1的安装和使用方法Llama 3.1的案例应用相关文章LLMs之LLaMA:LLaMA的简介、安装和使用方法、案例应用之详细攻略LLMs之LLaMA:LLaMA的简介、安装和使用方法、案例应原创 2024-07-23 23:50:17 · 4229 阅读 · 0 评论 -
LLMs之RAG:GraphRAG(本质是名词Knowledge Graph/Microsoft微软发布)的简介、安装和使用方法、案例应用之详细攻略
LLMs之RAG:GraphRAG(Microsoft微软发布)的简介、安装和使用方法、案例应用之详细攻略目录GraphRAG(Microsoft微软发布)的简介GraphRAG(Microsoft微软发布)的安装和使用方法GraphRAG(Microsoft微软发布)的案例应用GraphRAG(Microsoft微软发布)的简介GraphRAG(Microsoft微软发布)的安装和使用方法GraphRAG(Microsof原创 2024-07-12 23:56:53 · 2559 阅读 · 0 评论 -
LLMs之RAG:深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略
LLMs之RAG:深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略目录相关参考内容深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略# 1、定义嵌入模型和LLM# 2、加载数据并预处理:加载网页、文本分割、索引构建# 3、R原创 2024-07-12 02:16:35 · 4390 阅读 · 0 评论 -
LLMs之RAG:深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略—代码输出
LLMs之RAG:深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略—代码输出目录相关文章深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略经验—Query重写、Query分解、Query增强技术思路分析与代码实验结果对比之详细攻略—代码输出相关文章LLMs之RAG:深度剖析基于大语言模型的RAG系统中优化技巧总结—“用户查询”阶段优化策略原创 2024-07-12 01:56:34 · 1435 阅读 · 0 评论 -
LLMs之DSPy:DSPy(可优化RAG系统)的简介、安装和使用方法、案例应用之详细攻略
简而言之,更少的提示,更高的分数,以及更系统的方法来解决 LM 的难题。总的来说,DSPy为RAG系统的开发注入了新的活力,开辟了一种全新的构建和部署方式,值得AI开发者和研究人员探索和实践。总之,DSPy提供了一个系统和模块化的方法来设计基于PLM的NLP管道,有助于探索这个领域的新可能。:DSPy 的自动优化功能可以帮助调整您的 RAG 系统以获得更好的性能,通常超越手动调整的系统。>> 在几分钟到几十分钟的编译时间内,利用小型LM(如770M参数的T5)就可以实现强大的表现。原创 2024-04-21 23:59:56 · 1762 阅读 · 0 评论 -
LLMs之RAG:提升RAG策略之探究如何选择最佳嵌入和重新排名模型—组合嵌入模型(OpenAI/bge-large/llm-embedder/Cohere/Voyage/JinaAI/Google-
LLMs之RAG:提升RAG策略之探究如何选择最佳嵌入和重新排名模型—组合嵌入模型(OpenAI/bge-large/llm-embedder/Cohere/Voyage/JinaAI/Google-PaLM)、重排名模型(bge-reranker-base/bge-reranker-large/CohereRerank)目录提升RAG策略之如何选择最佳嵌入和重新排名模型提升RAG策略之如何选择最佳嵌入和重新排名模型地址原文地址:Boostin原创 2024-01-27 00:19:36 · 1246 阅读 · 0 评论 -
LLMs之Tool之ETA:通过现象看本质——探究国内外可以调用工具能力的LLM是如何实现自主选择工具的核心逻辑(本质就是以LLM作为选择的决策引擎),以及该能力的一些思考
LLMs之ETA:通过现象看本质——探究国内外可以调用工具能力的大模型是如何实现否调用或者是自主选择工具的本质逻辑(本质是LLM作为决策引擎),以及一些思考目录探究国内外可以调用工具能力的LLM是如何实现是否调用工具以及自主选择要调用合适工具的具体逻辑探究具体有调用工具能力LLM的一些关键技术:训练语料、命令LLM作为决策引擎时的提示词等探究国内外可以调用工具能力的LLM是如何实现是否调用工具以及自主选择要调用合适工具的具体逻辑你是一位大语言模型(LLM)算法专家,请你帮原创 2024-06-25 23:17:14 · 433 阅读 · 0 评论 -
LLMs之Agent之vision-agent:vision-agent的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent之vision-agent:vision-agent的简介、安装和使用方法、案例应用之详细攻略目录vision-agent的简介vision-agent的安装和使用方法vision-agent的案例应用vision-agent的简介2024年6月6日,Andrew Ng在Snowflake活动上发布vision-agent。Vision Agent 是一个库,可以帮助您利用代理框架生成代码来解决视觉任务。许多当前的视觉问题需要数小时甚至数天才原创 2024-06-21 01:42:10 · 1461 阅读 · 0 评论 -
LLMs之ReACT-Agent:ReACT-Agent简介、实现及其使用方法(MReACT/AutoReACT)、案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)之详细攻略
Prompt的案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)1、原创 2024-05-29 01:59:28 · 1502 阅读 · 0 评论 -
Agent之ETA之Skyvern:Skyvern(利用 LLM 和计算机视觉自动化基于浏览器的工作流程)的简介、安装和使用方法、案例应用之详细攻略
Agent之ETA之Skyvern:Skyvern的简介、安装和使用方法、案例应用之详细攻略目录Skyvern的简介Skyvern的安装和使用方法Skyvern的案例应用Skyvern的简介2024年3月17日,Skyvern 利用 LLM 和计算机视觉自动化基于浏览器的工作流程。它提供了一个简单的 API 端点来完全自动化手动工作流程,取代易碎或不可靠的自动化解决方案。传统的浏览器自动化方法需要为网站编写自定义脚本,通常原创 2024-05-23 02:33:52 · 1676 阅读 · 0 评论 -
Agent之Cover Agent:Cover Agent(用于提升自动化测试生成和代码覆盖率)的简介、安装和使用方法、案例应用之详细攻略
Agent之Cover Agent:Cover Agent(用于提升自动化测试生成和代码覆盖率)的简介、安装和使用方法、案例应用之详细攻略目录Cover Agent的简介Cover Agent安装和使用方法Cover Agent案例应用Cover Agent的简介CodiumAI Cover-Agent:一款AI驱动的工具,用于自动化测试生成和代码覆盖率的提升!2024年5月9日,CodiumAI发布Cover Agent,它旨在通过自动生成合格的原创 2024-05-23 02:34:36 · 1994 阅读 · 0 评论 -
MLM之RAG:探索基于LangChain和Redis的新多模态RAG模板实战
MLM之RAG:探索基于LangChain和Redis的新多模态RAG模板实战目录相关文章LLMs的限制与RAG的介绍RAG的工作原理文本和图像的多模态RAGRedis和LangChain的创新使用指南总结相关文章《Explore the new Multimodal RAG template from LangChain and Redis》地址地址:Explore Redis & LangChain's Multimodal原创 2024-05-21 02:13:28 · 2033 阅读 · 0 评论 -
LLMs之Agent之DERA:《DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agen
LLMs之Agent之DERA:《DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents》翻译与解读目录《DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents》翻译与解读Abstract摘要1、Introduction引言2、DERA:原创 2024-05-23 22:17:25 · 1653 阅读 · 1 评论 -
Agent:awesome-ai-agents项目的简介(最主流AI自主Agent的全面列表及其详情)、分类、使用方法之详细攻略
Agent:awesome-ai-agents项目的简介、分类、使用方法之详细攻略目录awesome-ai-agents项目的简介分类awesome-ai-agents项目的简介2023年7月,awesome-ai-agents项目正式发布。提供了一个关于AI自主代理的列表,包括开源项目和闭源项目与公司。列表中的每个AI代理都简要介绍了其主要功能和用途。整个列表是根据作者的最佳知识汇编的,虽然不是全面的,但涵盖了广泛的AI代理应用。文档鼓励用户提供反馈和讨论,并且可以提交原创 2024-05-14 23:08:37 · 1557 阅读 · 0 评论 -
LLMs之Agent之AutoGen:AutoGen的简介、安装、使用方法之详细攻略
LLMs之Agent之AutoGen:AutoGen的简介、安装、使用方法之详细攻略目录AutoGen的简介、安装、使用方法AutoGen的安装AutoGen的使用方法AutoGen的简介、安装、使用方法 2023年9月30日左右,微软正式开源AutoGen,这是一个框架,允许开发具有多个Agent的LLM应用程序,这些Agent可以相互交流以解决任务。AutoGen的Agent是可定制的、可对话的,并可以无缝地允许人类参与。它们可以在使用LLM、人原创 2023-11-02 00:58:45 · 5182 阅读 · 1 评论 -
AGI之Agent:AutoGPT(一个实验性的开源尝试使GPT-4完全代理自主)的简介、安装和使用方法、案例应用之详细攻略
AGI之Agent:AutoGPT(一个实验性的开源尝试使GPT-4完全代理自主)的简介、安装和使用方法、案例应用之详细攻略目录AutoGPT的简介AutoGPT的安装和使用方法构建您自己的代理 - 快速入门AutoGPT的案例应用AutoGPT的简介2023年4月,由Significant-Gravitas推出AI领域的重要产品AutoGPT,这是一个利用AI控制AI的现象级产品。AutoGPT的核心能力在于能够帮助用户拆解任务。用户原创 2023-11-29 22:26:37 · 1996 阅读 · 0 评论 -
AGI之Agent:《A Generalist Agent一个通用型代理—Gato》翻译与解读
AGI之Agent:《A Generalist Agent一个通用型代理—Gato》翻译与解读目录《A Generalist Agent》翻译与解读Abstract1 Introduction引言2 Model模型9 ConclusionsReferences《A Generalist Agent》翻译与解读地址论文地址:https://arxiv.org/abs/2205.06175时间2022年5月原创 2023-10-27 23:40:57 · 1122 阅读 · 0 评论 -
LLMs之ChatGLM-3:ChatGLM3/ChatGLM3-6B的简介(多阶段增强+多模态理解+AgentTuning技术)、安装和使用方法、案例应用(实现多轮对话能力(Chat)、工具调用能力
LLMs之ChatGLM3:ChatGLM3/ChatGLM3-6B的简介(多阶段增强+多模态理解+AgentTuning技术)、安装和使用方法、案例应用(实现多轮对话能力(Chat)、工具调用能力(Function Call)、代码执行能力(Code Interpreter)→进而实现 Agent 复杂任务场景)之详细攻略目录相关文章ChatGLM3的简介ChatGLM3的安装原创 2023-10-27 23:53:18 · 10645 阅读 · 2 评论 -
AGI之Agent:《Generative Agents: Interactive Simulacra of Human Behavior生成代理:人类行为的交互模拟》翻译与解读
AGI之Agent:《Generative Agents: Interactive Simulacra of Human Behavior生成代理:人类行为的交互模拟》翻译与解读目录《Generative Agents: Interactive Simulacra of Human Behavior》翻译与解读Abstract9 CONCLUSION《Generative Agents: Interactive Simulacra of Human Behavior》翻译与解读地址原创 2023-11-28 00:59:31 · 1813 阅读 · 0 评论 -
AGI之Agent:《ChemCrow: Augmenting large-language models with chemistry tools用化学工具增强大语言模型》翻译与解读
AGI之Agent:《ChemCrow: Augmenting large-language models with chemistry tools用化学工具增强大语言模型》翻译与解读目录《ChemCrow: Augmenting large-language models with chemistry tools》翻译与解读Abstract摘要4、Conclusion结论《ChemCrow: Augmenting large-language models with chemist原创 2023-12-13 00:25:25 · 1336 阅读 · 0 评论 -
LLMs之RAG:基于LangChain框架利用ChatGPT的API实现一个与在线网页交互的对话机器人—五大思路步骤—加载文档WebBaseLoader网址文件→文档分割(chunk_size=50
LLMs之RAG:基于LangChain框架利用ChatGPT的API实现一个与在线网页交互的对话机器人—五大思路步骤—加载文档WebBaseLoader网址文件→文档分割(chunk_size=500)→文本嵌入化(OpenAIEmbeddings)并存储到向量库(Chroma)→构造Prompt(拉取一个对象并将其返回为 LangChain对象)→定义LLMs(ChatOpenAI)→输入查询文本来构造RAG chain并利用LLMs生成响应目录相关文章LLMs之RAG:基于Lang原创 2023-10-19 23:55:14 · 2311 阅读 · 0 评论