1. 最长重复子数组
(1)dp[i][j]定义: 表示 A[i:]
和 B[j:]
的最长公共前缀,那么答案即为所有 dp[i][j]
中的最大值
(2)状态转移:如果 A[i] == B[j]
,那么 dp[i][j] = dp[i + 1][j + 1] + 1
,否则 dp[i][j] = 0。
考虑到这里 dp[i][j] 的值从 dp[i + 1][j + 1] 转移得到,所以我们需要倒过来,首先计算 dp[len(A) - 1][len(B) - 1],最后计算 dp[0][0]
class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
int size_A=A.size();
int size_B=B.size();
vector<vector<int>> dp(size_A+1,vector<int>(size_B+1));
int ans=0;
for(int i=size_A-1; i>=0; i--){
for(int j=size_B-1; j>=0; j--){
if(A[i]==B[j]){
dp[i][j]=dp[i+1][j+1]+1;
}
else dp[i][j]=0;
if(ans<dp[i][j]){
ans=dp[i][j];
}
}
}
return ans;
}
};
2. 最大子序和
(1)dp[i]含义:以第 i 个数结尾的连续子数组的最大和
(2)状态转移:dp[i] = max(dp[i-1]+nums[i], nums[i])
解释:我们如何求 dp[i] 呢?可以考虑 nums[i] 单独成为一段还是加入 dp[i-1] 对应的那一段,这取决于 nums[i] 和 dp[i-1]+nums[i] 的大小,我们希望获得一个比较大的
(3)base case: dp[0]=nums[0]
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n=nums.size();
vector<int> dp(n);
dp[0]=nums[0];
int res=nums[0];
for(int i=1; i<n; i++){
dp[i]=max(dp[i-1]+nums[i], nums[i]);
if(dp[i]>res){
res=dp[i];
}
}
return res;
}
};
3. 乘积最大子数组
(1) dp[i][j]含义:以 nums[i] 结尾的子数组的乘积最值,
- 当
j = 0
的时候,表示计算的是最小值; - 当
j = 1
的时候,表示计算的是最大值。
(2)状态转移:
典型错误想法:dp[i] = max(dp[i-1]*nums[i], nums[i]) ,因为存在负负得正。
如果当前位置是一个负数的话,那么我们希望以它前一个位置结尾的某个段的积也是个负数,这样就可以负负得正,并且我们希望这个积尽可能负得更多,即尽可能小。
如果当前位置是一个正数的话,我们更希望以它前一个位置结尾的某个段的积也是个正数,并且希望它尽可能地大。
因此需要维护两个最值。
(3)base case: dp[0][0] = nums[0] dp[0][1] = nums[0]
class Solution {
public:
int maxProduct(vector<int>& nums) {
int n=nums.size();
if(n<1) return 0;
vector<vector<int>> dp(n, vector<int>(2));
dp[0][0]=nums[0];
dp[0][1]=nums[0];
int res=dp[0][1];
for(int i=1; i<n; i++){
if(nums[i]>=0){
dp[i][1]=max(dp[i-1][1]*nums[i],nums[i]);
dp[i][0]=min(dp[i-1][0]*nums[i],nums[i]);
}
else{
dp[i][0]=min(dp[i-1][1]*nums[i],nums[i]);
dp[i][1]=max(dp[i-1][0]*nums[i],nums[i]);
}
res = max(res, dp[i][1]);
}
return res;
}
};
4. 最小路径和
(1)dp[i][j]含义:运动到(i,j) 位置时的最小路径
(2)状态转移:注意到只能右移和下移,所以dp[i][j]与dp[i-1][j]、dp[i][j-1]有关
dp[i][j]=min(dp[i-1][j], dp[i][j-1])+grid[i][j]
(3)边界条件:
上边界:dp[0][j] = dp[0][j-1] + grid[0][j];
左边界:dp[i][0] = dp[i-1][0]+grid[i][0];
(4)初始值:dp[0][0]=grid[0][0]
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row=grid.size();
int col=grid[0].size();
vector<vector<int>> dp(row, vector<int> (col));
dp[0][0]= grid[0][0];
for(int i=1; i<row; i++){
dp[i][0] = dp[i-1][0]+grid[i][0];
}
for(int j=1; j<col; j++){
dp[0][j] = dp[0][j-1] + grid[0][j];
}
for(int i=1; i<row; i++){
for(int j=1; j<col; j++){
dp[i][j]=min(dp[i-1][j], dp[i][j-1])+grid[i][j];
}
}
return dp[row-1][col-1];
}
};
5. 回文子串
(1)dp[i][j]定义:表示字符串 s 的第 i 到 j 个字母组成的串是否是回文子串
(2)状态转移:若s[i]==s[j] , 那么dp[i][j]=dp[i+1][j-1];
(3)边界条件:上述前提子串长度>2;
考虑子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。表达式 [i + 1, j - 1]
不构成区间,即长度严格小于 2
,即 j - 1 - (i + 1) + 1 < 2
,整理得 j - i < 3。
因此,在 s[i] == s[j]
成立和 j - i < 3
的前提下,直接可以下结论,dp[i][j] = true
,否则才执行状态转移。
(4)初始化:单个字符一定是回文串,因此把对角线先初始化为 true
,即 dp[i][i] = true
。
class Solution {
public:
int countSubstrings(string s) {
int n=s.size();
int res=s.size();
vector<vector<bool>> dp(n, vector<bool>(n));
for(int i=0; i<n; i++){
dp[i][i]=true;
}
for(int j=1; j <n; j++){
for(int i=0; i<j; i++){
if(s[i]!=s[j]){
dp[i][j]=false;
}
else{
if((j-1)-(i+1)+1 < 2) dp[i][j]=true;
else dp[i][j]=dp[i+1][j-1];
}
if(dp[i][j]){
res++;
}
}
}
return res;
}
};