【LeetCode】动态规划系列总结


参考: labuladong的算法小抄

用到dp的题目类型

动态规划问题的一般形式都是求子序列、从m长的数组中选出n个数

解题套路

动态规划三要素:

  • 重叠子问题
  • 最优子结构
  • 状态转移方程

核心思想就是穷举所有可行解求最值—>列出正确的「状态转移方程」

得到状态转移方程:找状态转移方程的方法是,思考每个状态有哪些「选择」,只要我们能用正确的逻辑做出正确的选择,算法就能够正确运行。
状态转移方程其实就代表着暴力解,然后用DP table 优化

  1. 明确 base case
  2. 明确「状态」
    原问题和子问题中会变化的变量
  3. 明确「选择」
    导致状态变化的行为
  4. 定义 dp 数组/函数的含义
    函数的返回值即题目要求我们计算的量,函数的参数为状态转移中会变化的量即状态
  5. 遍历顺序
    有些状态压缩后,就需要反着遍历,这样不会影响前面的值
    对于有些二维的 ,可以把dp table画出来找到适合的遍历顺序

一句话总结就是 遍历所有的状态,从所有选择中找到最值


# 初始化 base case
dp[0][0][...] = base
# 进行状态转移:遍历所有状态的取值
for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 求最值(选择1,选择2...)

983. 最低票价

983. 最低票价

在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。

火车票有三种不同的销售方式:

一张为期一天的通行证售价为 costs[0] 美元;
一张为期七天的通行证售价为 costs[1] 美元;
一张为期三十天的通行证售价为 costs[2] 美元。
通行证允许数天无限制的旅行。 例如,如果我们在第 2 天获得一张为期 7 天的通行证,那么我们可以连着旅行 7 天:第 2 天、第 3 天、第 4 天、第 5 天、第 6 天、第 7 天和第 8 天。

返回你想要完成在给定的列表 days 中列出的每一天的旅行所需要的最低消费。

示例 1:

输入:days = [1,4,6,7,8,20], costs = [2,7,15]
输出:11
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 1 天生效。
在第 3 天,你花了 costs[1] = $7 买了一张为期 7 天的通行证,它将在第 3, 4, …, 9 天生效。
在第 20 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 20 天生效。
你总共花了 $11,并完成了你计划的每一天旅行。
示例 2:

输入:days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
输出:17
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[2] = $15 买了一张为期 30 天的通行证,它将在第 1, 2, …, 30 天生效。
在第 31 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 31 天生效。
你总共花了 $17,并完成了你计划的每一天旅行。

提示:

1 <= days.length <= 365
1 <= days[i] <= 365
days 按顺序严格递增
costs.length == 3
1 <= costs[i] <= 1000


思路:

今天买多少要看后几天安排,所以是前面依赖后面,要从后往前遍历每一天。
如果当前天不包含在days中说明不用出门,那么它的最小花费就是后一天的; 如果包含在days中,则用出门,然后就有三种选择,就得到了状态转移方程:

 dp[d] = min(dp[d+1]+cost[0],    // 只包当天
 			dp[d+7]+cost[1],   // 包后7天的费用
 			dp[d+30]+cost[2])  // 包后30天的费用
  • 选择:
    如果不用出门,则不用选择;如果用出门,则选择买1天、7天还是30天的通行证
  • dp定义
    dp[i] 从第i天开始,所需的最小花费
        public int mincostTickets(int[] days, int[] costs) {
   
        int maxDay = days[days.length-1];
        int minDay = days[0];
        // dp[i] 从第i天开始,所需的最小花费
        int[] dp = new int[maxDay+31];
        int i = days.length-1;
        // 遍历每一天
        for(int d = maxDay;d>=minDay;d--){
   
            if(days[i]==d){
   
                // 选择:c[0]+1天后不包 c[1]+7天后不包 c[2]+30天后不包
                dp[d] = Math.min(costs[0]+dp[d+1],costs[1]+dp[d+7]);
                dp[d] = Math.min(dp[d],costs[2]+dp[d+30]);
                i--;

            }else{
   
                // 不在days中表示不需要出门
                dp[d] = dp[d+1];
            }
        }
        return dp[minDay];
    }

背包问题

常见背包问题

常见背包问题可分为:

  • 01 背包问题
    • 最基本的背包问题就是 01 背包问题:一共有 N 件物品,第 i(i 从 1 开始)件物品的重量为 w[i],价值为 v[i]。在总重量不超过背包承载上限 W 的情况下,能够装入背包的最大价值是多少?
    • 本质上是:从数组中选m个数,使其满足target
    • dp[i][j]: 表示从nums[0…i]中选m个数(m<=i)使其和为j的方案数 或者是否能使其和为j
    • 优化成一维:dp[j] 表示使得和为j的方案数 或是否能使其和为j,因为i只和前一个相关,所以就去掉了,但是需要外循环遍历 arrs,内循环遍历 target,且内循环倒序
      方案数模板:
          // 目标为i的表达式数目是dp[i]种
      	int[] dp = new int[target+1];
      	// base case 
          dp[0] = 1;
          for (int num : nums) {
             
              for (int j = t;j>=num;j--){
             
                  dp[j] = dp[j] + dp[j-num];
              }
          }
      
  • 完全背包问题
    完全背包与 01 背包不同就是每种物品可以有无限多个:一共有 N 种物品,每种物品有无限多个,第 i(i 从 1 开始)种物品的重量为 w[i],价值为 v[i]。在总重量不超过背包承载上限 W 的情况下,能够装入背包的最大价值是多少?
    可见 01 背包问题与完全背包问题主要区别就是物品是否可以重复选取。

背包问题具备的特征:
是否可以根据一个 target(直接给出或间接求出),target 可以是数字也可以是字符串,再给定一个数组 arrs,问:能否使用 arrs 中的元素做各种排列组合得到 target。

背包问题解法:

01 背包问题:
如果是 01 背包,即数组中的元素不可重复使用,外循环遍历 arrs,内循环遍历 target,且内循环倒序(因为物品只能用一次,从二维压缩到一维后 不能让之前的结果影响后来的结果所以要倒序):

完全背包问题:
(1)如果是完全背包,即数组中的元素可重复使用并且不考虑元素之间顺序,arrs 放在外循环(保证 arrs 按顺序),target在内循环。且内循环正序。(因为可以用多次,所以不用倒序)
(2)如果组合问题需考虑元素之间的顺序,需将 target 放在外循环,将 arrs 放在内循环,且内循环正序。

01 背包问题

要点就是 数组中的元素不可重复, 这样我们就找到我们的target即套公式:
外循环遍历 arrs,内循环遍历 target,且内循环倒序

解法由来

这个套路是怎么得到的呢,下面是解析:
01背包问题由二维到一维的过程:

首先对于01背包问题:
给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?


  • 状态:
    背包的容量和可选择的物品
  • 选择
    是否装进背包
  • dp的定义
    dp[i][j] =x 表示对于前i个物品,背包容量为j时,若x为true 说明恰好能把背包装满;若x为false,说明不能恰好把背包装满
  • 状态转移方程
    对于选择不把当前物品装进背包,则是否能把背包装满取决于前一个状态
    dp[i][j] = dp[i-1][j]
    对于选择把当前物品装进背包,则
    dp[i][j] = dp[i-1][j-nums[i-1]]
    由于 i 是从 1 开始的,而数组索引是从 0 开始的,所以第 i 个物品的重量应该是 nums[i-1],这一点不要搞混。

这样就可以写出伪代码

    for (int i = 1; i <= n; i++) {
   
        for (int j = 1; j <= sum; j++) {
   
            if (j - nums[i - 1] < 0) {
   
               // 背包容量不足,不能装入第 i 个物品
                dp[i][j] = dp[i - 1][j]; 
            } else {
   
                // 装入或不装入背包
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j-nums[i-1]];
            }
        }
    }

注意到 dp[i][j] 都是通过上一行 dp[i-1][…] 转移过来的,之前的数据都不会再使用了。
所以,我们可以进行状态压缩,将二维 dp 数组压缩为一维。

压缩后的代码:
这就是我们上面总结的套路:arrs在外层,target在里层,且里层要倒序。
因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果。

    for (int i = 0; i < n; i++) 
        for (int j = sum; j >= 0; j--) 
            if (j - nums[i] >= 0) 
                dp[j] = dp[j] || dp[j - nums[i]];

时间复杂度 O(n*sum),空间复杂度 O(sum)。

416. 分割等和子集

给你一个只包含正整数的非空数组nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100


思路:

  • 找到是哪种背包问题
    nums 是我们的选择,这个选择是不可重复的,所以是0-1背包问题。
    由于是两个和相等的子集,所以相当于是求一个子集的和为sum/2。
    外层循环为选择池 num: nums,内层循环为 target。
  • dp定义
    dp[i] 表示是否存在和为 i 的 num 组合。
  • 状态转移方程
    对于元素之和等于 i - num 的每一种组合,在最后添加 num 之后即可得到一个元素之和等于 i 的组合,因此dp[i] 依赖于 dp[i - num],并且在计算 dp[i - num] 时,要保证索引较小的元素值不被覆盖,需要后向更新 dp[i],并且当 i - num < i 时, dp[i] 已经更新过,于是:
    dp[i] = dp[i] || dp[i - num]
    public boolean canPartition(int[] nums) {
   

        int sum = 0;
        for (int num : nums) {
   
            sum+=num;
        }
        // 是奇数肯定不符合
        if((sum&1)==1){
   
            return false;
        }
        int target = sum/2;
        // dp[i] 是否存在和为i的num组合
        boolean[] dp = new boolean[target+1];
       // Arrays.fill(dp,false);
        dp[0] = true;
        for(int num:nums){
   
            for (int i = target; i >= num; i--) {
   
				// 不装入背包或装入
                dp[i] = dp[i] || dp[i-num];

            }

        }
        return dp[target];
    }

494. 目标和

给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1

提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 100


问题转化:
加正负符号 得到最终的目标和, 相当于我们把加+的集合在一起就是正数和x, 把加-的集合在一起就是负数和y。而正数和x就是我们背包问题的目标和。
x-y = target
我们一直x+y = nums的和 sum
因此x=(target+sum)/2.
也就是从nums里选出几个数,使其和为x,这就转换成了0-1背包问题

dp[i] 表示和为 i 的 num 组合有 dp[i] 种

    public int findTargetSumWays(int[] nums, int target) {
   
        int sum = Arrays.stream(nums).sum();
        int x = (sum+target)/2;
        if(target > sum || (target + sum) % 2 == 1) return 0;
        // dp[i] 目标为i 的表达式组合数
        int[] dp = new int[x+1];
        // base case
        dp[0] = 1;
        // 选择 num
        for(int num:nums){
   
            for (int i = x; i >=num; i--) {
   
                dp[i] = dp[i] + dp[i-num];
            }
        }
        return dp[x];
    }

1049 最后一块石头的重量 II

1049 最后一块石头的重量 II

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

示例 1:
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
示例 2:

输入:stones = [31,26,33,21,40]
输出:5
示例 3:

输入:stones = [1,2]
输出:1
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 100


思路:
每次选两个石头,再把减后的值放到石头堆 其实就是把stones分成正号堆和负号堆,将减之后的结果放回石头堆其实就是给(x-y) 加正号还是负号
如果是+(x-y),那其实就是x和y还是在原来的堆,不变;
如果是-(x-y),那就是x和y交换一下位置
因此可以转换为:为 stones 中的每个数字添加 +/-,使得形成的「计算表达式」结果绝对值最小。

那么这个问题 就可以转换成0-1背包问题,类似于目标和

这就将问题彻底切换为 01 背包问题:从 stones 数组中选择,凑成总和不超过 sum/2
的最大价值。
其中「成本」&「价值」均为数值本身。

  • dp定义
    定义 dp[i] 代表考虑前 i 个物品(数值),凑成总和不超过 i 的最大价值。
  • 状态转移
    不选和选 取最大价值
    dp[i] = max(dp[i], dp[i-stone]+stone)
class Solution {
   
    public int lastStoneWeightII(int[] stones) {
   
        int sum = Arrays.stream(stones).sum();
        int target = sum/2;
        // dp[i] 考虑前 i 个物品(数值),凑成总和不超过 i 的最大价值。
        int[] dp = new int[target+1];

        for (int stone : stones) {
   
            for (int i = target; i >=stone; i--) {
   
                // 选 和 不选 取最大值
            
                dp[i] = Math.max(dp[i],dp[i-stone]+stone);
            }
        }
        return Math.abs(sum - dp[target] - dp[target]);
    }
}

879. 盈利计划

879. 盈利计划
集团里有 n 名员工,他们可以完成各种各样的工作创造利润。
第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。
工作的任何至少产生 minProfit 利润的子集称为 盈利计划 。并且工作的成员总数最多为 n 。
有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7 的值。

示例 1:
输入:n = 5, minProfit = 3, group = [2,2], profit = [2,3]
输出:2
解释:至少产生 3 的利润,该集团可以完成工作 0 和工作 1 ,或仅完成工作 1 。
总的来说,有两种计划。
示例 2:
输入:n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:至少产生 5 的利润,只要完成其中一种工作就行,所以该集团可以完成任何工作。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。
提示:
1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100


思路:
经典的背包问题是一种限制:容量的限制标准, 我们这题有两种限制:员工人数的上限和利润的下限

  • dp定义
    dp[i] [j] [k] 对profit[0,…,i] 选择了j个员工并满足利润至少为k 的盈利计划的总数目
    最后返回的结果就是 遍历j从0到n的结果和 dp[len][j][minprofit]
  • 转移方程
    我们有两种选择,
    • 一种是选profit[i]
      选的话 必须当前所需的员工数group[i] 必须要小于等于 目前可用的员工数j
      这里要注意的是,我们第三维 由于是利润至少为k,那么当当前profit[i] 直接满足所需利润k
      那就是一种情况,不需要借助前一个的利润
      dp[i][j][k] = dp[i-1][j][k] + dp[i-1][j-group[i-1]][Math.max(0,k-profit[i-1])]
      
    • 一种是不选
      不选那当前的计划数就是i-1的计划数
      dp[i-1][j][k]
class Solution {
   
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
   
        int pl = profit.length;
        int MOD = (int)1e9+7;
        // dp[i][j][k] 对于profit[0...i] 用j个工人 达到利润至少为k 的计划数目
        int[][][] dp = new int[pl+1][n+1][minProfit+1];
        //base case
        dp[0][0][0] = 1;
        // 石头
        for (int i = 1; i <= pl; i++) {
   
            // 工人
            for (int j = 0; j <= n; j++) {
   
                // 利润
                for (int k = 0; k <=minProfit ; k++) {
   
                    // 当前所需的工人数可以满足要求 可以选择
                    if(j-group[i-1]>=0){
   
                        // 前一个的Profit+ 当前profit = 当前能满足的利润k 那如果前一个profit 小于0,也就是当前的profit直接能满足条件,就可以计划数+1
                        dp[i][j][k] = (dp[i-1][j][k] + dp[i-1][j-group[i-1]][Math.max(0,k-profit[i-1])])% MOD;
                    } else{
   
                        dp[i][j][k] = dp[i-1][j][k];
                    }
                }
            }
        }

        int sum =0;
        for (int j = 0; j <= n; j++) {
   

            sum = (sum+dp[pl][j][minProfit]) % MOD;
        }
        return sum;
    }
}

由于i只和前一个状态有关,我们可以进行状态压缩
状态压缩后:也就是我们的套路
外层遍历选择,内层倒序遍历n及minProfit
倒序的原因保证求dp[j][k]时 用到的dp[j-group[i-1]][Math.max(0,k-profit[i-1])]是上一时刻的值,如果正序遍历的话这个值会被改

class Solution {
   
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
   
        int pl = profit.length;
        int MOD = (int)1e9+7;

        // 用j个工人 达到利润至少为k 的计划数目
        int[][] dp = new int[n+1][minProfit+1];
        //base case
        // 对利润为0时 不管工人有多少,总能提供一种方案
        for (int j = 0; j <= n; j++) {
   
            dp[j][0] = 1;
        }

        // 石头
        for (int i = 1; i <= pl; i++) {
   
            // 工人
            for (int j = n; j >= group[i-1]; j--) {
   
                // 利润
                for (int k = minProfit; k >=0 ; k--) {
   
                    // 当前所需的工人数可以满足要求 可以选择
                    dp[j][k] = (dp[j][k] + dp[j-group[i-1]][Math.max(0,k-profit[i-1])])% MOD;
                }
            }
        }
        return dp[n][minProfit];
    }
}

474. 一和零

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:
输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:

输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示:

1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100


dp定义:
strs[0…i]中j个0 k个1 的最大子集的大小
dp[i][j][k]
最后dp[len][m][n] 就是最大子集的大小
状态转移:
就是选择和不选两种情况

    public int findMaxForm(String[] strs, int m, int n) {
   

        int len = strs.length;
        // dp[i][j][k]:strs[0..i]中j个0 k个1 的最大子集的大小
        int[][][] dp = new int[len+1][m+1][n+1];

        for (int i = 1; i <= len; i++) {
   
            // 零的个数
            int zeros = countZero(strs[i-1]);
            // 1的个数
            int ones = strs[i-1].length()-zeros;
            for (int j = 0; j <= m; j++) {
   
                for (int k = 0; k <= n; k++) {
   
                    // 选strs[i-1]
                    if(j>=zeros && k>=ones){
   
                        dp[i][j][k] = Math.max(dp[i-1][j][k
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值