基本思想
每次将一个待排序的元素,按其大小插入到已经排好序的子序列的适当位置,知道全部元素插入完成为止。
直接插入排序
1.排序思路
arr[0...i-1]为有序区(刚开始时i=1,有序区只有arr[0]一个元素),arr[i...size]为待排序区,每次将待排序区的第一个元素arr[i]插入到有序区中的适当位置,每趟操作都使有序区增加一个元素,待排序区减少一个元素。
2.排序算法
void InsertSort(int* arr, int size)
{
if (arr == NULL)
return;
for (int i = 1; i < size; i++)
{
//1.保存要排序的数
int tmp = arr[i];
//2.去有序区寻找该数应该插入的位置
int j = i - 1;
while (j >= 0 && tmp < arr[j])
{
//3.把有序区的位置一个一个往后移
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = tmp;
}
}
3.算法分析
直接插入排序由两重循环构成,外循环进行n-1次。
若初始数据序列递增有序即为正序时,每一趟排序不进入内循环,仅进行一次大小比较。此时元素移动次数为2次(tmp = arr[i]和arr[j+1] = tmp)。所以正序时比较次数和元素移动次数均达到最小值Cmin和Mmin:
- Cmin = n-1
- Mmin = 2(n-1)
- Cmax = n(n-1) / 2
- Mmax = (n-1)(n+4) / 2
故直接插入排序算法的时间复杂度为O(N^2)。由于只使用了i、j、tmp三个辅助变量,故空间复杂度为O(1)。
当i > j且arr[i] = arr[j]时,直接将arr[i]插入到arr[j]后,故直接插入排序是稳定的。
折半插入排序(二分插入排序)
1.排序思路
采用折半查找方法先在arr[0...i-1]中找到插入位置,再通过移动元素进行插入
2.排序算法
void InsertSort1(int* arr, int size)
{
if (arr == NULL)
return;
int i, j, low, high;
//1.保存要插入的数
for (i = 1; i < size; i++)
{
int tmp = arr[i];
low = 0;
high = i - 1;
//2.折半查找插入位置(插入位置为high+1)
while (low <= high)
{
int mid = low + ((high - low) >> 1);
if (tmp < arr[mid])
high = mid - 1;
else
low = mid + 1;
}
//3.元素后移,插入
for (j = i - 1; j >= high + 1; j--)
{
arr[j + 1] = arr[j];
}
arr[j + 1] = tmp;
}
}
3.算法分析
当初始数据序列为正序时,比较次数并不能减少;当为逆序时,比较次数也不会增加。元素移动次数与直接插入排序相同。
故折半插入排序的时间复杂度为O(N^2),空间复杂度为O(1),是稳定的。
就平均性能而言,折半查找优于顺序查找,所以折半插入排序优于直接插入排序。
希尔排序
1.排序思路
希尔排序是一种分组插入排序。先取一个小于n的整数d1,作为第一个增量,序列被分为d1组,所有相互之间距离为d1的倍数的元素放在同一个组中,在各组内进行直接插入排序;然后取第二个增量d2(<d1),重复上述过程,直至增量为1。
希尔排序每趟并不产生有序区,在最后一趟排序结束之前,所有元素并不一定归位,每趟排完之后,数据越来越接近有序。
2.排序算法
void ShellSort(int* arr, int size)
{
if (arr == NULL)
return;
int i, j, gap;
//1.取gap
gap = size / 2;
while (gap > 0)
{
//2.分组比较
for (i = gap; i < size; i++)
{
int tmp = arr[i];
//3.移动元素,插入
j = i - gap;
while (j >= 0 && tmp < arr[j])
{
arr[j + gap] = arr[j];
j -= gap;
}
arr[j + gap] = tmp;
}
gap = gap / 2;
}
}
3.算法分析
希尔排序算法的性能分析是一个复杂的问题,它的时间复杂度与所取gap有关,一般认为其时间复杂度为O(N^1.3),空间复杂度为O(1)。
希尔排序是一种不稳定的算法。