一、 爬虫是否违法?
- 法不禁止即为许可
- 隐匿自己的身份(商业IP代理)
- 不要被目标网站举证有破坏动产行为
- 尽量遵守爬虫协议(robots.txt)
二、 爬虫的分类和作用?
- 通用爬虫 —> 搜索引擎
- 定向爬虫 —> 有具体的爬取目标
对中小企业来说,数据一定是短板,要么花钱买数据,要么写爬虫
国家机器和很多的互联网产品做舆情监控基本也是通过网络爬虫来
三、 爬虫怎么写?
1、抓取页面 —> requests / aiohttp
2、解析页面
-
正则表达式解析 —> re(regular expression)
- compile() —> Pattern
- search() / match() —> Match —> group()
- findall() —> list
-
XPath解析 —> lxml
- 右键菜单“检查” —> Copy —> Copy full XPath
-
CSS选择器解析 —> beautifulsoup4 / pyquery
- BeautifulSoup
- select():获取跟CSS选择器匹配的元素(列表)
- select_one():获取跟CSS选择器匹配的第一个元素 —> Tag
- text:获取标签中的内容
- attrs:字典,通过键值对的方式获取标签的属性值
- BeautifulSoup
3、保存数据
- CSV(逗号分隔值文件)—> csv
- reader / writer —> writerow()
- Excel —> xlrd / xlwt / openpyxl
- Workbook —> 工作簿 —> create_sheet()
—> Worksheet —> 工作表
—> cell(row, col, value) —> 单元格
- Workbook —> 工作簿 —> create_sheet()
四、如何抓取动态内容?
1、直接找到提供JSON数据的接口
- 浏览器开发者工具 —> Network —> XHR
- 专业的抓包工具 —> Charles / Fiddler / Wireshark
2、 Selenium驱动浏览器获取动态内容
- 自动化测试工具
-
IDE
-
Remote Control
-
WebDriver:驱动浏览器模拟用户操作 —> 抓取到动态内容
-
- Chrome()
-
get():加载页面
-
隐式等待 / 显示等待
- implictly_wait(10):如果元素在10秒内没有出现就引发异常
- WebDriverWait(browser, 10) —> until() —> 指定等待条件
-
page_source:页面带动态内容的HTML代码
-
find_element_by_xxx() —> WebElement
-
find_elements_by_xxx() —> [WebElement]
-
text:获取标签中的文本内容
-
get_attribute():获取标签属性
-
-
-
import time
from concurrent.futures.thread import ThreadPoolExecutor
import requests
from selenium.webdriver import Chrome
def dowload_image(image_url):
resp = requests.get(image_url)
if resp.status_code == 200:
filename = image_url[image_url.rfind('/') + 1:]
try:
with open(f'image360/{filename}', 'wb') as f:
for data in resp.iter_content(512):
f.write(data)
except OSError:
pass
def main():
browser = Chrome()
browser.get('https://image.so.com/z?ch=beauty')
for _ in range(20):
# 让浏览器执行JS代码
browser.execute_script('window.scrollTo(0, window.scrollY + 1500)')
time.sleep(0.5)
# 隐式等待
# 在使用find_xxx方法获取页面元素时,如果元素没有出现,可以等待指定时间,
# 如果等待超时就引发异常,如果在指定的时间内获取到元素就返回对应的元素
browser.implicitly_wait(10)
# 显示等待 ---> 创建一个等待对象
# wait = WebDriverWait(browser, 10)
# # 设置等待条件
# wait.until(expected_conditions.presence_of_element_located(
# (By.CSS_SELECTOR, 'span.img > img')
# ))
image_tags = browser.find_elements_by_css_selector('span.img>img')
# print(len(image_tags))
with ThreadPoolExecutor(max_workers=32) as pool:
start = time.time()
for image_tags in image_tags:
image_url = image_tags.get_attribute('src')
pool.submit(dowload_image, image_url)
end = time.time()
print(f'下载耗时:{end - start:.3f}秒')
browser.close()
if __name__ == '__main__':
main()
五、如何实现并发(并行)编程?
并行:真正的同时进行,需要多CPU的支持
并发:可能不是真正的同时进行,但是通过快速的切换制造出并行的效果
线程:操作系统分配CPU的基本单位,最小的执行单元
进程:操作系统分配内存的基本单位,是程序在一组数据上的活动
通常我们启动一个程序,就启动了一个(或多个)进程,一个进程中又可以包含
一个或多个线程。
单线程(只有主线程,只有唯一的一个执行线索)
- 多线程 —> I/O密集型任务(爬虫)—> GIL(全局解释器锁)—> 无法使用多核特性
- 多进程 —> 计算密集型任务(音视频编解码、文件压缩、机器学习算法)
- 异步编程 —> I/O密集型任务(爬虫)—> 通过提高CPU利用率达到协作式并发
C —> CPython —> malloc() / free()
Java —> Jython
C# —> IronPython
Python —> PyPy
import random
import time
from concurrent.futures.thread import ThreadPoolExecutor
"""
装饰器:用一个函数去装饰另一个函数或者类,为其提供额外的功能(横切关注功能:程序中和正常业务逻辑没有必然关联的功能)
装饰器实现了设计模式(前任总结的可重用的设计理念)中的代理模式(proxy pattern)
cross-concern
一等函数(一等公民):
~ 函数可以赋值给变量
~ 函数可以作为函数的参数
~ 函数可以作为函数的返回值
"""
# 装饰器的参数是被装饰的函数,返回值是带有装饰功能的函数
def record_time(func):
# 带有装饰功能的函数(除了执行原函数外,返回值是带有装饰功能的函数)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(f'{func.__name__}时间:{end - start:.3f}秒')
return result
return wrapper
# download = record_time(download)
@record_time
def download(filename):
print(f'开始下载{filename}.')
time.sleep(random.randint(4, 6))
print(f'{filename}下载完成.')
@record_time
def upload(filename):
print(f'开始下载{filename}.')
time.sleep(random.randint(5, 8))
print(f'{filename}上传完成.')
@record_time
def main():
# # 通过调用Thread类的构造器就可以穿件线程对象,
# # 指定target和args参数告诉线程启动后要执行的任务以及对应的参数
# t1 = Thread(target=download, args=('Python从入门到住院'), )
# t2 = Thread(target=download, args=('MySQl从删库到跑路'), )
# t3 = Thread(target=upload, args=('数据分析从精通到放弃'), )
# # 通过调用线程对象的star()方法启动线程
# t1.start()
# t2.start()
# t3.start()
# # 通过调用线程对象的join()方法等待线程结束
# # 让主线程等待t1、t2、t3对应的线程执行结束
# t1.join()
# t2.join()
# t3.join()
# 创建和释放一个线程是有比较大的系统开销,如果系统频繁的地释放线程,
# 那么代码的性能也会受到影响,所以使用线程最佳的方式是提前创建线程池,
# 线程池是一个容器,维持了若干个线程对象,需要线程的时候就从线程池中
# 获取一个线程,用完了之后不释放而是归还给线程池,以便重复使用
with ThreadPoolExecutor(max_workers=32) as pool:
# 调用线程池对象的submit方法教给线程池中的线程去执行
# submit方法会返回Future对象(让你在将来可以获得线程的执行结果)
pool.submit(download, 'Python从入门到住院')
pool.submit(download, 'MySQl从删库到跑路')
pool.submit(upload, '数据分析从精通到放弃')
# f1.result()
# f2.result()
# f3.result()
if __name__ == '__main__':
main()
ps:老师推荐的光学文字识别服务
easyocr —> ocr (optical character recognition)
pip install easyocr