我们知道5000的阶乘是积极庞大的,int long long ,就算是能扩大一倍的unsigned long long也无能为力,那我们就只能使用高精度解决这个问题了。
代码如下
#include <iostream>
#include <vector>
using namespace std;
// 大整数相乘
vector<int> multiply(const vector<int>& a, const vector<int>& b) {
vector<int> c(a.size() + b.size(), 0);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
c[i + j + 1] += c[i + j] / 10;
c[i + j] %= 10;
}
}
while (c.size() > 1 && c.back() == 0) {
c.pop_back(); // 去掉前导零
}
return c;
}
// 高精度阶乘
vector<int> factorial(int n) {
vector<int> res = {1};
for (int i = 2; i <= n; i++) {
vector<int> num;
int temp = i;
while (temp != 0) {
num.push_back(temp % 10);
temp /= 10;
}
res = multiply(res, num);
}
return res;
}
// 输出大整数
void printBigInteger(const vector<int>& num) {
for (int i = num.size() - 1; i >= 0; i--) {
cout << num[i];
}
cout << endl;
}
int main() {
int n;
cin >> n;
vector<int> result = factorial(n);
printBigInteger(result);
return 0;
}
该示例代码定义了两个函数,multiply
函数用于实现大整数相乘,factorial
函数用于计算高精度阶乘。在 main
函数中,读取输入的正整数 n
,然后调用 factorial
函数计算阶乘结果,并通过 printBigInteger
函数输出结果。
运行示例代码,并以输入样例 10
为例,输出结果为 3628800
。
请注意,由于阶乘的结果会很快增长,超过一般数据类型的表示范围,所以需要使用大整数的表示方式来进行计算,上述示例代码使用了一个整数数组来表示大整数,并实现了大整数的相乘运算。如果输入的数字较大,可以考虑使用更加高效的大整数库,例如 boost::multiprecision
库或 GMP
(GNU Multiple Precision Arithmetic Library)。