白化

本文详细介绍了信号处理中白化变换的过程及CCA(典型相关分析)的学习方法。通过数学公式展示了如何实现白化变换矩阵V,并进一步利用该矩阵产生变换矩阵W,用于联合空间滤波器的学习。此外,还探讨了PCA白化与ZCA白化的区别。
摘要由CSDN通过智能技术生成
% Whiten transformation
V=zeros(nchannel,nchannel);
for n=1:N_trial
    Xwhit=X(:,:,n);
    npot=size(Xwhit,2);
    Xwhit=Xwhit-repmat(mean(Xwhit,2),1,npot);
    C=Xwhit*Xwhit'/npot;
    [vec,val]=eig(C);
    V(:,:,n)=sqrt(val)\vec';
    X(:,:,n)=V(:,:,n)*Xwhit;    %看这里看这里看这里
end

% Multiset CCA for learning joint spatial filters W
Y=[];
for n=1:N_trial
    Y=[Y;X(:,:,n)];
end
R=cov(Y.');
S=diag(diag(R));
[tempW rho]=eigs(R-S,S,K);
for n=1:N_trial
    W(:,:,n)=tempW((n-1)*nchannel+1:n*nchannel,:)./norm(tempW((n-1)*nchannel+1:n*nchannel,:));
end
for n=1:N_trial
    W(:,:,n)=(W(:,:,n)'*V(:,:,n))';     %看这里看这里看这里 
end

只对训练模型进行白化,求出V, 产生变换矩阵W后,这个变换矩阵还需要进行V变换,才能再次作用于 包含“训练样本+测试样本”的整体样本集合。


另外:PCA白化和ZCA白化区别,还没搞明白就看这里:

http://blog.csdn.net/u010681136/article/details/41746349


白化可以使得样本方差相等,但样本方差相等是不是就意味着服从高斯分布?

https://zhidao.baidu.com/question/1959251121463879660.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值