自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(173)
  • 论坛 (2)

原创 Python lambda function

The following two functions explain lambda function and its usage in python.How to Use Python Lambda FunctionsPython Anonymous/Lambda Function

2020-10-22 09:11:59 12

原创 Python zip() and unzip()

By reading the article Using the Python zip() Function for Parallel Iteration, you can get famaliar with following contents:Understanding the Python zip() FunctionUsing zip() in PythonPassing n ArgumentsPassing No ArgumentsPassing One ArgumentPassing

2020-10-22 09:10:14 14

原创 根据HSV颜色空间提取图像中特定颜色

import cv2import numpy as npimg = cv2.imread('test_img/6_1.jpg')cv2.imshow("original", img)img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)rows, cols, channels = img.shape# 区间1lower_red = np.array([0, 43, 46])upper_red = np.array([10, 255, 255])mas

2020-10-07 17:06:41 82 1

原创 PIL save numpy array as img encounter OSError: cannot write mode F as JPEG

Solution:import numpy as npfrom PIL import Imagewith open('/media/yuxijin/dataset/videos/content/mountain_2/flow/reliable_9_10.txt', 'r') as f: data = f.readlines()header = list(map(int, data[0].split(' ')))w = header[0]h = header[1]vals = np.

2020-10-05 18:37:49 19

原创 Ubuntu18.04安装Matlab2018b

# 创建一个文件夹供matlab iso文件挂载sudo mkdir /mnt/dest#将第一个iso文件挂载 第一个路径是你的iso文件所在路径,第二个是刚刚创建的挂载点sudo mount -o loop /media/muriuki/Transcend/MATLAB\R2018a\Linux/R2018a_glnxa64_dvd1.iso /mnt/dest/#创建安装目录并修改访问权限sudo mkdir /usr/local/MATLABsudo mkdir /usr/local/M

2020-09-29 16:14:37 62

原创 Visualize files names in ‘*.flo‘

If you are familiar with python, you can convert your ‘*.flo’ files to png and even video by tools provoided by georgegach/flowiz. Just follow their instruction, you can easily visualize your flow files.Below shows an example of the result by the python c

2020-09-29 15:47:28 21

原创 Convert Multiple Frames in a Specified Folder to Video

import globimport cv2import osfiles = glob.glob('bamboo_2/floviz/png/*.png')print(files)files.sort(key=lambda x: x[15:-4])files.sort()print(files)frame_list = []for i in files: img = cv2.imread(i) frame_list.append(img)size = (frame_li

2020-09-29 15:21:06 16

原创 DataWhale金融风控组队学习Task05——模型融合

模型融合的方式平均:简单平均法pre = (pre1 + pre2 + pre3 +...+pren )/n加权平均法pre = 0.3pre1 + 0.3pre2 + 0.4pre3 投票:简单投票法from xgboost import XGBClassifierfrom sklearn.linear_model import LogisticRegressionfrom sklearn.ensemble import RandomForestClassifier, Voting

2020-09-27 23:19:16 14

原创 优化问题的封闭式解决方案(Closed form solution for optimization problem)

1)F范式的平方可以被写为迹的操作矩阵和它的逆矩阵相乘得到的矩阵的迹2)F范式平方的导数和的导数等于导数的和令等式等于0,得到参考链接:Closed form solution for optimization problem

2020-09-26 16:25:23 19

原创 矩阵奇异值分解及伪逆

矩阵A的奇异值分解矩阵A的伪逆python计算矩阵的奇异值分解和伪逆a = np.matrix([[2, -1, 0],[4,3,-2]])u, s, vt = np.linalg.svd(a, full_matrices=True)np.linalg.pinv(a)参考文章:Computing SVD and pseudoinverse

2020-09-26 11:26:35 54

原创 Tensorflow运行程序出现Blas GEMM launch failed

问题:解决方法:参考博文:tensorflow显存不足报错CUBLAS_STATUS_ALLOC_FAILED

2020-09-26 10:18:34 30

原创 DataWhale金融风控组队学习Task04——建模调参

模型调参贪心调参先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。的缺点就是可能会调到局部最优而不是全局最优树模型中参数调整的顺序,也就是各个参数对模型的影响程度①:max_depth、num_leaves②:min_data_in_leaf、min_child_weight③:bagging_fraction、 feature_fraction、bagging_freq④:reg_lambda、reg_

2020-09-24 23:26:31 17

原创 DataWhale金融风控组队学习Task03——特征工程

原文出处:team-learning-data-mining/FinancialRiskControl/Task3 特征工程.md数据预处理查找出数据中的对象特征和数值特征numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))label

2020-09-21 23:53:31 1085

原创 Lua语法快速了解

原文链接:Lua 语言 15 分钟快速入门注释-- 两个横线开始单行的注释--[[ 加上两个[和]表示 多行的注释。 --]]变量和流控制num = 42 -- 所有的数字都是double。别担心,double的64位中有52位用于保存精确的int值; 对于需要52位以内的int值,机器的精度不是问题。s = 'walternate' -- 像Python那样的不可变的字符串。t = "双引号也可以"u = [[ 两个方括号 用于

2020-09-21 15:42:03 15

原创 DataWhale金融风控组队学习Task02——数据分析

# nan可视化missing = data_train.isnull().sum()/len(data_train)missing = missing[missing > 0]missing.sort_values(inplace=True)missing.plot.bar()numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)category_fea = list(filter(lamb

2020-09-18 23:41:41 42

原创 《Tensorflow深度学习算法原理与编程实战》阅读笔记——5.4拟合

泛化(Generalization):训练得到的模型在未知新输入数据上表现良好的能力泛化误差(Generalization Error)/ 测试误差(Test Error):模型在未知新输入数据上得到的误差欠拟合(Underfitting):模型不能够在训练集上获得足够低的误差。模型容量不足难以拟合训练集时出现欠拟合。简言之,模型太简单,数据比较复杂。过拟合(Overfitting):训练误差和测试误差之间差距太大。模型容量高于任务所需,很好地记忆了每一个训练数据中随即噪音的分布而忽略了对训练数据中通

2020-09-16 20:34:04 39

原创 DataWhale金融风控组队学习Task01——赛事理解

原文链接:team-learning-data-mining/FinancialRiskControl/Task1 赛题理解.md阅读笔记训练文件.csv的数据含义:id 为贷款清单分配的唯一信用证标识loanAmnt 贷款金额term 贷款期限(year)interestRate 贷款利率installment 分期付款金额grade 贷款等级subGrade 贷款等级之子级employmentTitle 就业职称employmentLength 就业年限(年)homeOwner

2020-09-15 23:40:32 12

原创 Abstracts of Salient Objects Detection (just for self-study and memorize)

Salient Objects in Clutter: Bringing Salient Object Detection to the ForegroundECCV 2018Abstract:We provide a comprehensive evaluation of salient object detection (SOD) models. Our analysis identifies a serious degign bias of existing SOG datasets which

2020-08-31 16:28:59 46

原创 DataWhale编程实践:Task04——查找2

具体算法思想参见team-learning-program/LeetCodeClassification/3.查找.mdLeetCode 1 Two Sumclass Solution: # 遍历数组过程中,当遍历到元素v时,可以只看v前面的元素,是否含有target-v的元素存在。 # 如果查找成功,就返回解; # 如果没有查找成功,就把v放在查找表中,继续查找下一个解。 # 即使v放在了之前的查找表中覆盖了v,也不影响当前v元素的查找。因为只需要找到两个元素,

2020-08-28 23:26:25 35

原创 Abstracts of Face Synthesis Sketch Related Papers (just for self-study and memorize)

Face Photo-Sketch Synthesis via Knowledge TransferIJCAI 2019Abstract:Despite deep neural networks have demonstrated strong power in face photo-sketch synthesis task, their performance, however, are still limited by the lacking of training data ( photo-s

2020-08-26 10:31:40 38

原创 anaconda虚拟环境中安装cuda9.0和tensorflow-gpu1.7.0

背景:Ubuntu18.04系统,已装Cuda10.0,GPU显卡Geforce RTX 2080ti,anaconda虚拟环境test命令:激活环境conda activate test安装python3.5conda install python=3.5安装cudatoolkit9.0conda install cudatoolkit=9.0安装cudnnconda install cudnn安装tensorflow-gpu1.7.0pip install tensorfl

2020-08-25 15:41:34 173

原创 DataWhale编程实践:Task03——查找1

具体算法思想参见team-learning-program/LeetCodeClassification/3.查找.md这部分主要是利用set,dict,map的一些属性和方法解决问题。from typing import Listclass Solution: # LeetCode 349 Intersection Of Two Arrays 1 # 把nums1记录为set,判断nums2的元素是否在set中,是的话,就放在一个公共的set中,最后公共的set就是我们要的结果

2020-08-24 16:24:32 57

原创 DataWhale编程实践:Task02——动态规划

具体算法思想参见team-learning-program/LeetCodeClassification/2.动态规划.md下面是对上面链接中的各个leetcode题给出的代码测试版本(注意函数括号中的一些内容被删掉了,因为不需要)。另外,子序列和子串是不一样的概念,子序列可以是原字符串中不连续的字符组成的字符串,只要每个字符出现的顺序和原字符串一致,而子串必须是由原字符串中的连续字符组成的串串。# Leetcode 300.最长上升子序列def lengthOfLIS(nums): if

2020-08-21 20:52:28 54

原创 Ubuntu解压缩zip文件到指定路径

如果unzip命令还没有安装,就在终端输入sudo apt-get install unzip如果想要将文件解压缩到特定路径,使用(-d指定目标路径)unzip file.zip -d destination_folder如果源目录和目标目录是相同的,则使用unzip file.zip...

2020-08-21 10:24:59 410

原创 RuntimeError: cuda runtime error (11) : invalid argument at /opt.../THC/THCGeneral.cpp:663

I have installed pytorch 0.4.1 by the followint command lineconda install pytorch=0.4.1 cuda90 -c pytorchbut encounter the following errorTHCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1535493744281/work/aten/src/THC/THCGeneral.cpp line=663 error=1

2020-08-19 12:46:15 237

原创 DataWhale编程实践:Task01——分治

具体算法思想参见team-learning-program/LeetCodeClassification/1.分治.md下面是对上面链接中的各个leetcode题给出的代码测试版本(注意类名称都由Solution改为相互不同名称):# 169多数元素class MajorityElement(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: i

2020-08-17 19:41:52 49

原创 CUDA out of memory error possible cause

Error:Open NVIDIA X Server SettingsCheck Used Dedicated Memory:If the Used Dedicated Memory is bigger than 50% or 60%, you should release the GPU occupation.If using Jupyter Lab, remember restart kernel every time finished running a code file. The b

2020-08-14 21:26:02 30

原创 Task09:文件与文件系统

基本文件操作打开文件使用open(file, mode=‘r’, buffering=None, encoding=None, errors=None, newline=None, closefd=True),其中:file: 必需,文件路径(相对或者绝对路径)。mode: 可选,文件打开模式。buffering: 设置缓冲。encoding: 一般使用utf8。errors: 报错级别。newline: 区分换行符参数mode可以有一下几种设置:fileObject.close() 用于关闭一个

2020-08-08 23:33:02 25

原创 Task08:模块与datetime模块

模块if name == 'main’的意思是:当 .py 文件被直接运行时,if name == 'main’之下的代码块将被运行;当 .py 文件以模块形式被导入时,if name == 'main’之下的代码块不被运行。并不主张使用 * 这种方法来导入模块,因为这种方法经常会导致代码的可读性降低。命名空间因为对象的不同,也有所区别,可以分为如下几种:内置命名空间(Built-in Namespaces):Python 运行起来,它们就存在了。内置函数的命名空间都属于内置命名空间,所以,我们可

2020-08-07 22:05:51 59

原创 Task07:类、对象与魔法方法

对象 = 属性 + 方法对象是类的实例。换句话说,类主要定义对象的结构,然后我们以类为模板创建对象。类不但包含方法定义,而且还包含所有实例共享的数据。封装:信息隐蔽技术我们可以使用关键字 class 定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。继承:子类自动共享父类之间数据和方法的机制Python 的 self 相当于 C++ 的 this 指针。类有一个名为__init__(self[, param1, param2…])的魔法方法,该方法在类实例化时会自动调用。在 P.

2020-08-05 23:54:07 46

原创 Task06:函数与Lambda表达式

函数在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:位置参数、默认参数、可变参数和关键字参数。位置参数、默认参数、命名关键字参数和关键字参数。*args 是可变参数,args 接收的是一个 tuple**kw 是关键字参数,kw 接收的是一个 dict命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置

2020-08-02 22:59:05 27

原创 Task05:字典、集合和序列

字典可变类型与不可变类型序列是以连续的整数为索引,与此不同的是,字典以"关键字"为索引,关键字可以是任意不可变类型,通常用字符串或数值。字典是 Python 唯一的一个 映射类型,字符串、元组、列表属于序列类型。字典的定义字典 是无序的 键:值(key:value)对集合,键必须是互不相同的(在同一个字典之内)。dict 内部存放的顺序和 key 放入的顺序是没有关系的。dict 查找和插入的速度极快,不会随着 key 的增加而增加,但是需要占用大量的内存。3. 创建和访问字典4. 字

2020-07-31 22:53:36 28

原创 Task 4:列表、元组和字符串

字符串capitalize() 将字符串的第一个字符转换为大写。lower() 转换字符串中所有大写字符为小写。upper() 转换字符串中的小写字母为大写。swapcase() 将字符串中大写转换为小写,小写转换为大写。count(str, beg= 0,end=len(string)) 返回str在 string 里面出现的次数,如果beg或者end指定则返回指定范围内str出现的次数。endswith(suffix, beg=0, end=len(string)) 检查字符串是否以指定子

2020-07-28 23:53:34 23

原创 Task 3: 异常处理

练习题:猜数字游戏题目描述:电脑产生一个零到100之间的随机数字,然后让用户来猜,如果用户猜的数字比这个数字大,提示太大,否则提示太小,当用户正好猜中电脑会提示,“恭喜你猜到了这个数是…”。在用户每次猜测之前程序会输出用户是第几次猜测,如果用户输入的根本不是一个数字,程序会告诉用户"输入无效"。(尝试使用try catch异常处理结构对输入情况进行处理)获取随机数采用random模块。import randomnum = random.randint(0,100)iter = 1wh

2020-07-25 22:31:15 30

原创 Task 2: 条件循环结构

条件语句if 语句if - else 语句if - elif - else 语句assert 关键词assert这个关键词我们称之为“断言”,当这个关键词后边的条件为 False 时,程序自动崩溃并抛出AssertionError的异常。循环语句while 循环while语句最基本的形式包括一个位于顶部的布尔表达式,一个或多个属于while代码块的缩进语句。while - else 循环for 循环for - else 循环range() 函数enumerate()函数br

2020-07-23 21:15:47 24

原创 Task01:变量、运算符、数据类型及位运算

变量、运算符与数据类注释在 Python 中,# 表示注释,作用于整行。‘’’ ‘’’ 或者 “”" “”" 表示区间注释,在三引号之间的所有内容被注释。运算符算术运算符比较运算符逻辑运算符位运算符三元运算符其他运算符注意:is, is not 对比的是两个变量的内存地址==, != 对比的是两个变量的值比较的两个变量,指向的都是地址不可变的类型(str等),那么is,is not 和 ==,!= 是完全等价的。对比的两个变量,指向的是地址可变的类型(list,dict等),

2020-07-22 21:09:22 22

原创 Structural Consistency and Controllability for Diverse Colorization_ECCV_2018

论文下载:Structural Consistency and Controllability for Diverse Colorization_ECCV_2018摘要对给定的灰度图像进行着色是媒体和广告业的一项重要任务。由于颜色化固有的模糊性(许多着色通常是合理的),最近的方法开始显式地建模多样性。然而,现有方法独立对于每一个像素预测色度,很少考虑结构不一致这一最明显的缺陷。为了解决这个问题,论文开发了一个基于条件随机场的变分自动编码器公式,它能够在考虑结构一致性的同时实现多样性。此外,论文引入了一种

2020-07-07 00:01:33 75

原创 opencv_python图像处理——HOG特征描述算子-行人检测

参考链接:Datawhale 计算机视觉基础-图像处理(下)-Task04 HOG特征描述算子-行人检测import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltif __name__ == '__main__': src = cv.imread("img/winner.jpg") hog = cv.HOGDescriptor() cv.imshow("input", src)

2020-07-06 23:45:49 218

原创 opencv_python图像处理——Haar特征描述算子-人脸检测

基础理论部分可参见Datawhale 计算机视觉基础-图像处理(下)-Task03 Haar特征描述算子-人脸检测import cv2import numpy as nphaar_front_face_xml = 'haarcascade_frontalface_default.xml'haar_eye_xml = 'haarcascade_eye.xml'# 1.静态图像中的人脸检测def StaticDetect(filename): # 创建一个级联分类器 加载一个 .xml

2020-07-02 23:52:52 138

原创 Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer(CVPR 2020)——论文阅读

论文下载摘要本文介绍一种神经风格迁移模型,所提出方案即使在零样本设置下也可以产生高质量的图像,且在更改内容几何形状时具有更大的自由度。通过引入Two Stage Peer-Regularization Layer,图卷积层将潜空间中的风格和内容重新组合在一起。与绝大多数现有方法不同,模型不依赖于任何预训练网络来计算感知损失,且直接在潜在空间进行循环损失优化。引言神经样式转移(NST)研究如何构建模型,这些模型可以转换输入图像(或视频)的视觉外观以匹配所需目标图像的样式。 例如,用户可能希望将给定的照

2020-06-30 10:36:38 123

空空如也

SURF特征匹配

发表于 2016-10-21 最后回复 2016-10-21

opencv mat读取图像出错

发表于 2016-07-10 最后回复 2016-07-21

空空如也
提示
确定要删除当前文章?
取消 删除