题目描述
小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图中的最短路径。
小蓝的图由 2021 个结点组成,依次编号 1 至 2021。
对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条长度为 a 和 b 的最小公倍数的无向边相连。
例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
请计算,结点 1 和结点 2021 之间的最短路径长度是多少。
提示:建议使用计算机编程解决问题。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int a[2022][2022];
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
//求最大公约数
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main(int argc, char *argv[]) {
int i,j,k;
//根据题目要求制作图
for(i=1;i<=2021;i++){
for(j=1;j<=2021;j++){
if(abs(i-j)>21){
a[i][j]=-1;
}else{
a[i][j]=i*j/gcd(i,j);
}
}
}
for(k=1;k<=2021;k++){//中间点,每次图中加入的结点,以k结点作为桥梁
for(i=1;i<=2021;i++){//起始点
for(j=1;j<=2021;j++){//目标点
if(a[i][k]>0&&a[k][j]>0){//判断是否能够通过k结点从i结点到j结点
if(a[i][k]+a[k][j]<a[i][j]||a[i][j]<0){//如果能通过k结点从i结点到j结点,且通过k结点从i结点到j结点的距离小于未加入k时i结点到j结点的最小距离则进行更新
a[i][j]=a[i][k]+a[k][j];//更新,这里面存储的是当前i结点到j结点的最短路径
}
}
}
}
}
printf("%d",a[1][2021]);//输出答案,运行时间可能会有一些长,耐心等待
return 0;
}