3查找算法

本文详细介绍了Java中常见的三种查找算法:顺序(线性)查找、二分查找和插值查找。线性查找适用于无序数组,通过遍历数组来查找目标值。二分查找则需要有序数组,通过不断缩小查找范围来提高效率。插值查找在有序数组中,根据目标值与数组边界的关系自适应地计算中间位置。此外,还针对二分查找进行了扩展,以查找重复元素的所有下标。
摘要由CSDN通过智能技术生成

3、查找算法

3.1查找算法介绍

在java中,我们常用的查找有四种:

  • 1)顺序(线性)查找
  • 2)二分查找/折半查找
  • 3)插值查找
  • 4)斐波那契查找

3.2、线性查找算法

有一个数列: {1,8,10, 89,1000,1234,,判断数列中是否包含此名称【顺序查找】要求:如果找到了,就提示找到,并给出下标值。
代码实现:

public class SeqSearch {

	public static void main(String[] args) {
		int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
		int index = seqSearch(arr, -11);
		if(index == -1) {
			System.out.println("没有找到到");
		} else {
			System.out.println("找到,下标为=" + index);
		}
	}

	/**
	 * 这里我们实现的线性查找是找到一个满足条件的值,就返回
	 * @param arr
	 * @param value
	 * @return
	 */
	public static int seqSearch(int[] arr, int value) {
		// 线性查找是逐一比对,发现有相同值,就返回下标
		for (int i = 0; i < arr.length; i++) {
			if(arr[i] == value) {
				return i;
			}
		}
		return -1;
	}

}

3.3、二分查找算法

请对一个有序数组进行二分查找{1,8,10, 89,1000,1234},输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

2.3.1二分查找算法的思路

在这里插入图片描述

2.3.2、二分查找的代码

说明:增加了找到所有的满足条件的元素下标:
课后思考题: {1,8,10,89, 1000,1000,1234}当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的1000.

import java.util.ArrayList;
import java.util.List;

//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {

	public static void main(String[] args) {
		//int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
		int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11, 12, 13,14,15,16,17,18,19,20 };
		

		//
//		int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
//		System.out.println("resIndex=" + resIndex);
		
		List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1);
		System.out.println("resIndexList=" + resIndexList);
	}

	// 二分查找算法
	/**
	 * 
	 * @param arr
	 *            数组
	 * @param left
	 *            左边的索引
	 * @param right
	 *            右边的索引
	 * @param findVal
	 *            要查找的值
	 * @return 如果找到就返回下标,如果没有找到,就返回 -1
	 */
	public static int binarySearch(int[] arr, int left, int right, int findVal) {
		

		// 当 left > right 时,说明递归整个数组,但是没有找到
		if (left > right) {
			return -1;
		}
		int mid = (left + right) / 2;
		int midVal = arr[mid];

		if (findVal > midVal) { // 向 右递归
			return binarySearch(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 向左递归
			return binarySearch(arr, left, mid - 1, findVal);
		} else {
			
			return mid;
		}

	}
	
	//完成一个课后思考题:
	/*
	 * 课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,
	 * 有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000
	 * 
	 * 思路分析
	 * 1. 在找到mid 索引值,不要马上返回
	 * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
	 * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
	 * 4. 将Arraylist返回
	 */

	public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

		System.out.println("hello~");
		// 当 left > right 时,说明递归整个数组,但是没有找到
		if (left > right) {
			return new ArrayList<Integer>();
		}
		int mid = (left + right) / 2;
		int midVal = arr[mid];

		if (findVal > midVal) { // 向 右递归
			return binarySearch2(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 向左递归
			return binarySearch2(arr, left, mid - 1, findVal);
		} else {
//			 * 思路分析
//			 * 1. 在找到mid 索引值,不要马上返回
//			 * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
//			 * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
//			 * 4. 将Arraylist返回
			
			List<Integer> resIndexlist = new ArrayList<Integer>();
			//向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
			int temp = mid - 1;
			while(true) {
				if (temp < 0 || arr[temp] != findVal) {//退出
					break;
				}
				//否则,就temp 放入到 resIndexlist
				resIndexlist.add(temp);
				temp -= 1; //temp左移
			}
			resIndexlist.add(mid);  //
			
			//向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
			temp = mid + 1;
			while(true) {
				if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
					break;
				}
				//否则,就temp 放入到 resIndexlist
				resIndexlist.add(temp);
				temp += 1; //temp右移
			}
			
			return resIndexlist;
		}

	}
}

2.4、插值查找算法

2.4.1、插值查找原理介绍:

插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。

将二分查找中的求mid索引的公式, low表示左边索引left, high表示右边索引right.key就是前面我们讲的findVal
在这里插入图片描述
int mid = low +(high - low) * (key - arr[low]) / (arr[high] - arr[low]);/插值索引/
对应前面的代码公式:
int mid=left +(right - left)*(findVal - arr[left]) / (arr[right] - arr[left])
在这里插入图片描述

2.4.2、代码实现

import java.util.Arrays;

public class InsertValueSearch {

	public static void main(String[] args) {
		
//		int [] arr = new int[100];
//		for(int i = 0; i < 100; i++) {
//			arr[i] = i + 1;
//		}
		
		int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
		
		int index = insertValueSearch(arr, 0, arr.length - 1, 1234);
		//int index = binarySearch(arr, 0, arr.length, 1);
		System.out.println("index = " + index);
		
		//System.out.println(Arrays.toString(arr));
	}
	
	public static int binarySearch(int[] arr, int left, int right, int findVal) {
		System.out.println("二分查找被调用~");
		// 当 left > right 时,说明递归整个数组,但是没有找到
		if (left > right) {
			return -1;
		}
		int mid = (left + right) / 2;
		int midVal = arr[mid];

		if (findVal > midVal) { // 向 右递归
			return binarySearch(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 向左递归
			return binarySearch(arr, left, mid - 1, findVal);
		} else {

			return mid;
		}

	}

	//编写插值查找算法
	//说明:插值查找算法,也要求数组是有序的
	/**
	 * 
	 * @param arr 数组
	 * @param left 左边索引
	 * @param right 右边索引
	 * @param findVal 查找值
	 * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
	 */
	public static int insertValueSearch(int[] arr, int left, int right, int findVal) { 

		System.out.println("插值查找次数~~");
		
		//注意:findVal < arr[0]  和  findVal > arr[arr.length - 1] 必须需要
		//否则我们得到的 mid 可能越界
		if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
			return -1;
		}

		// 求出mid, 自适应
		int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
		int midVal = arr[mid];
		if (findVal > midVal) { // 说明应该向右边递归
			return insertValueSearch(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 说明向左递归查找
			return insertValueSearch(arr, left, mid - 1, findVal);
		} else {
			return mid;
		}

	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值