一、数据结构相关概念
1、数据的概念
数据是对客观事物的符号表示,在计算机科学中指所有能输入到计算机中并能够被计算程序处理的符号的总称。例如,一个学生的学习成绩,一个编译程序或文字处理程序中的处理字符串,这些都是数据。对计算机科学而言,数据的含义极为广泛,如图像、声音等都可以通过编码而归之于数据的范畴。
2、数据元素和数据项
数据元素是数据的基本单位,是计算机进行输入输出操作的最小单位,是不可分割的数据项组成。例如一个学生的学习成绩由一条数据元素表示,而学号为20180828001的学习成绩中的语文成绩由一个数据项表示。
学号 | 姓名 | 语文 | 数学 |
20180828001 | 张三 | 98 | 99 |
20180828002 | 李四 | 90 | 100 |
3、数据结构的概念
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。可用公式表示为:
数据结构 = 数据元素 + 关系(结构)
在任何问题中,数据元素都不是孤立存在的,而是在它们之间存在着某种关系,这种数据元素相互之间的关系成为结构。根据数据元素之间关系的不同特性,通常有下列四类基本结构,如下所示:
集合:结构中的数据元素除了存在“同属于一个集合”的关系外,不存在任何其他关系。
线性结构:数据元素之间存在着一对一关系
树型结构:数据元素之间存在着一对多关系
图状结构(或网状结构):数据元素之间存在着多对多的关系
以上描述的4种关系是数据元素之间的逻辑关系,又称为逻辑结构。
4、数据结构的存储
数据元素在计算机中的表示称为数据的存储结构,它包含数据元素的表示和关系的表示。
数据元素的表示:
在计算机中数据元素是用一个由若干位组合起来形成的一个位串表示。例如在Java中,32位表示一个整数,16位表示一个字符,通常这个位串称为元素或结点。元素或结点可看成是数据元素在计算机中的映像。通常在一个程序中定义数据元素的数据类型时,就确定了数据元素在内存中的存放。数据类型可以是系统提供的数据类型,也可以是自定义的数据类型。
数据元素关系的表示:
数据元素之间的关系在计算机中有两种不同的表示方法:顺序存储和链式存储,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。顺序存储结构借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,数据元素存放在一片连续的存储空间里,通常使用数据来实现。链式存储结构则借助于引用或指针来表示数据元素之间的逻辑关系,被存放的元素被随机地存放在内存中再用指针将它们链接在一起。
5、算法的介绍
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
为了便于比较同一个问题的不同算法,通常以算法中的基本操作重复执行的频度作为度量的标准。假设赋值、比较、显示和递增语句分别用 a 、b 、c 和 d 时间单位来执行,现在考虑Java中显示前 n 个自然数所需要的时间。
(1) int i = 0; //赋值
(2) while(i < n){ //比较
(3) System.out.println(i); //显示
(4) i = i + 1; //递增
}
上述算法所需要的执行时间为:
T(n) = a + (n+1)*b + n*c + n*d = a + b + n(b + c + d)
这里 T 表示程序的执行时间,是元素树 n 的线性函数,与 n 成正比。
一个算法的时间复杂度反映了程序运行从开始到结束所需要的时间。通常使用大O符号表示:T(n) = O(f(n)) , 其中 f(n)是算法中基本操作重复执行的次数随问题规模 n 增长的增长率函数。T(n) 是算法的时间复杂度,它表示随问题规模 n 的增长,算法的运行时间的增长率和f(n)的增长率相同。
常见的时间复杂度:
O(1) < O(logn) < O(n) < O(nlogn) <O(n²) < O(n³) < O(2ⁿ)
其中,O(1) 是常量级时间复杂度,时间效率最优。然后是对数级、线性级、平方级、立方级、指数级等,指数级的时间复杂度是最差的。
6、程序的公式表示
程序 = 数据结构 + 算法